题目:黑客通过外网进入一家工厂的控制网络,之后对工控网络中的操作员站系统进行了攻击,最终通过工控协议破坏了正常的业务。我们得到了操作员站在攻击前后的网络流量数据包,我们需要分析流量中的蛛丝马迹,找到FLAG。
题目附件连接:https://pan.baidu.com/s/1jGu7-1EKc29HTQc-pCJZlw (提取码:8kqx)
解题步骤:
首先打开流量包,数据包都是关于Modbus/TCP的流量。
运行脚本,分析流量包中Modbus/TCP的协议功能码,脚本和运行结果如下:
import pyshark def get_code(): captures = pyshark.FileCapture("question_1564353677_modbus1.pcap") func_codes = {} for c in captures: for pkt in c: if pkt.layer_name == "modbus": func_code = int(pkt.func_code) if func_code in func_codes: func_codes[func_code] += 1 else: func_codes[func_code] = 1 print(func_codes) if __name__ == '__main__': get_code()
modbus常见功能码分析,分析结果我们可以知道1(读取线圈状态),3(读多个寄存器),4(读输入寄存器),2(读取输入内容),四个功能码都出现了702次,唯独16(预置多个寄存器)功能码只出现了两次,所以猜测与16功能码相关的流量可能存在关键数据,于是运行脚本分析与16功能码相关的流量,提取其中的数据,脚本和运行结果如下:
import pyshark def find_flag(): cap = pyshark.FileCapture("question_1564353677_modbus1.pcap") idx = 1 for c in cap: for pkt in c: if pkt.layer_name == "modbus": func_code = int(pkt.func_code) if func_code == 16: payload = str(c["TCP"].payload).replace(":", "") print(hex_to_ascii(payload)) print("{0} *".format(idx)) idx += 1 def hex_to_ascii(payload): data = payload flags = [] for d in data: _ord = ord(d) if (_ord > 0) and (_ord < 128): flags.append(chr(_ord)) return ''.join(flags) if __name__ == '__main__': find_flag()
提出的数据存在一个16进制字符串
00000000003901100001001932005400680065004d006f006400620075007300500072006f0074006f0063006f006c0049007300460075006e006e00790021
,将16进制字符串在线转换对应的ASII码,得到TheModbusProtocolIsFunny!
,提交成功,Flag为TheModbusProtocolIsFunny!
。
题目:工业网络中存在异常,尝试通过分析PCAP流量包,分析出流量数据中的异常点,并拿到FLAG。
题目附件连接:https://pan.baidu.com/s/17jkHLBqcjxP0o9FpGIfObA (提取码:95ds)
解题步骤:
打开流量包,发现存在PRES、TCP、COTP、MMS协议的流量,其中选择一个数据包,追踪TCP流发现存在关键字flag.txt,如图所示:
然而通过多次分析与flag.txt相对应的流量包中,没有发现flag.txt的内容,于是换一个思路,对流量包进行关键字(jpg、png、zip、rar、flag)搜索,查看是否存在其他的文件。在linux系统中使用grep指令,可以对文件进行指定关键字搜索。linux中grep命令用法,我们使用指令进行关键字搜索
grep "flag" -a test.pacp grep ".zip" -a test.pacp grep ".jpg" -a test.pacp grep ".png" -a test.pacp
最终,发现存在base64加密的png图片码,如图所示:
flag{ICS-mm104}
,脚本和原始图片如下:# coding=utf-8 import os, base64 img_str = 'iVBORw0KGgoAAAANSUhEUgAAAdAAAABiCAYAAADgKILKAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABzXSURBVHhe7Z2Js11Fncfn75maqZmaqZkaS0elXAp1GHRUhGFAQHYQFQRFBWQRiBoBWQyyKaBsxo0tCAgkQHayQEL2jSxAyEoSIAHOvM/JPTPn9fv1Od19+9z3bvh+qr5FkXe77z33ntO/7l//fr/+m0IIIYQQ0ciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAnIgAohhBAJyIAKIYQQCciACiGEEAl0ZkDff78oNm/ZV8xfuK2Y8fxrxex5W4vlK3cVe/Ye6L1CCCGEGF6yGtC33n63uOPuNcW/fHJG8bcffsarf/3UjNLAVtz/h/Xm6/h3IYQQYiKSzYBufePt4thT55qG0NXxp8/ttTqIDGj/vP3Oe+VKf/L1y4qTzppffOq/ni/+6bDpxY+ve7n3irHw/VrKzdsjE6tFL24v7p26rrhs0pLy8x3+pZnFhz/zbDnZ+th/PFd86auzi3MuWFhcc+Py4qFpG4s1694cNcmKYf/+94oXFm4rbr1zdXHe9xcVn/+fWcVHPvv/7/WVk+YU371kcXHbyN9nzd1a7JVXRHxAeGdknFi2Ylfx+FNbiql/3lA8MPK8/+XJzcXLy3eWz80wcdxpc4t//sSMciw55Zz5xXW/WF4+zwcODO46shhQBqCjvzbHNIKWfnjVS72WB2HQtl7XxWB+KDJz9tbiM1+eaX6HTQbUej3KxZKXdxRXTV5aehys92kThm/u/Dd6vbXD9sDd960tPvH558z+fGKicfmPl5RGW4hBsnDx9lGT10q5YTuNyemHDn/WfAYQk8xf3LqyeGPb271W3bLl1X2l0bP01PRXe6/ygwG1ruOLx88uFr+0o/eqbsliQPlhrAvxiZVBHW4Y63Vd3EiHGtOe2Gx+d5XGw4CuWLWrOPv8BWbfsXp25uu9XptZMDIQ+SYRoXrksU293oToFp6Rc7+3yLwPUS7ee+/94r6p64t//Ph0830sYWSffGZLr4duwLt0wcWLzfdHGNE2fAYU/f1HpxezR1ajXdO3Ad24aW/xdx+xL+LIY2cV0597rdj95v7yh9y9e3/pysOFUEcGNA1mcKyerO/us0fNLF2iv/vjht6rx2K1Q6ngAvrlHau890OKdu3a3+vdz2NPbs7ynq++tq/XoxDd8MrGvaUHzrr/6srBu+++X1w5eanZf4gwvF2BXbDes1KIAWXhdta3FxSHHWl7nNiueXNP+/jRD30b0Ft+tcr88J/7ysxi+/YwV4AMaBpTbls55js75uQ5xcpVu3uvaMZtWymFnbveKc449wWzv1SxV9rG3BfeyGI8+d6E6IrXt75VDvisjKz7z1UOMEJW3zF68un8K9E9ew6U+5bW+1UKMaAVrGbJ9vj0F58f088fH3ql96pu6NuAEvzhfmjEDCMUGdA08PXXv69/+Nj0cq8jlHrbumLZsfOdoD3wE8+cV9zzwLrS3cpqjz1LghrwUODJwBiyh0lAAK8norsJ2n3yC2Mfmkpfv2BBOQDQ9959B8pgph073iknGLi+L5+05P/2Z2+/a/S2ghA52LV7f3Hrr1eXwS7u/dmkfmla4bG4mfqnDaU3kBiDm+9YVfzbp+3Px/OBpysnN94yduLvKsaAVry4ZMeYfggi7JK+DCgrTPcDo3//3LNRkVAyoPGQMuR+X0SWxuC2rxQDRunkrx80eD5d+MPFwaviig0b9xSbNu/t/Z/NXfesNd+P/Z6/PtMehAAYcaIRyVEWIjd4Uax7tE39wGTRWo0hDIqVi8/E252QVyJyPhfs/YZ4jFIMKBBhX++HbIQu6cuAWhYfff/yF3uvCEMGNB5r8tK2YnNx21eK4Wc3LDP7QAQjPPNsuCciBvbUfYMEq0shJgKkSln36FfPmFemWvk8eP1wz+/WmX1iXDCuPja8sse7Ul67vv8IdfZk8ULV+/3a2fPNgMNUA0o0fb0fvHJd0pcBfXrGq6M+bCVcFjHIgMaDa8j9vnhwYnDbVwpl/oJtZnvExv7qtXGrzhhWrdltvu9RJ85Jzh8VIjdLl+0cdX/iPmVbgQkg5DagBPL5tjVw2bbx69+uMdv+fMqK3ivSYT/S7Ze8zRMco4pSDShZB/V+cEF3SV8G9M+PbBz1YSs1RX5ayIDGw2zO/b64+WNw21cK4cDI+2OsrPa4UEnM7hLC7K33nnL7qt4rhBh/eE7JSybHkqIFbHnUyW1AMUhWf6d/64XeK5ohnoFVm9uez99PoQVyS90cVAwnk13yvev/jlINKC7qej9HHD2r95du6MuAYijrH7ZSbOSTDGgargvzhl/GzRLrbesKgT1Gqy2i4lDXsG9pvTdBSkJMJJ6f/bo3HSu3AaVwidXfE0+FR9N+77IXzT4I/kvFSt2ZOedgnqaVhpJqQL98wujv89RvhE0cUunLgPoM33gaUGY0zHZwV7BKeXBklcznmfb45jLijIiyrlx89EvEJxFwvx8Z4Pn8vO9LS3eU0aa5YVZZ/75+ct2y3l/CqLetKwRfcASBCIMoCeYzoKkP3kSHqGXuK6InmaCwz4sbO/Re5jdZ8vLO8n4kv4/VEFswg8h95d4nXuLhaZvKz86zwUqJKOpQSAOhqMYfHnyl7IPnmmozuZ8rVmDsTfL9Mm48+OjG8n2pUoXXJTc5DShuYcsYEbQTkk9dQUERtw/0q9/EebgqGHfdvtj7rO5dKwI45TmmPzcv/uIfja56l5soA9qW/Nqm8y+yQ4r7NaC4SbjpybOigIDVV124DNgvzJVki1uGh833MCDqvhIuTjGJihtuXjHmdTGRtKRh1Nte/TN/1SGLetu62li3/k2zHaKowSDwrYBx2XQx0HXBFT8Zu1pwXdBMBM88z1/VicCQ52b5qzVhELjvcMFZ7REFN2Jd7gScWH3VB2qiPUkP8r03rn6eWT6jBQMi1WRO+6Y/v5iI/7vvXVtGpaeC4SHYrS2PGRckv9mCRduCJy5t5DSg6zfYvwmBOzGsWWs/39wnsfC7UFDH7Yu8zQqrGEyKASUX3e2HMbZLht6AMpD6wq/bxN5ETK1VC2bW1g3iEwnEhHKDVSWEKLJQ3A1zSoPFUG9bVxusAKx2zCT37UsfyGJoMuKscIYBCv+7n33StQcnQUwKb7q1PV+uEgNFFZhSwRGCHz8irC4wq5SY2AVWrlY/m7YcTD1atXp3OZmxXuOKZ8KtQ0x97ZCKPZX++5S55So1ltdef2uMJydE/Y4bFTkNqC+oM9aI4K2wCj6wCIidODCBcvv5xncWjurH/TtKMaBECrv9dL2lM/QGlFJOVttQMXBwXSlwikFoZZG6uBEp6fUdoxYkM/JQfvrz0QMwq5EY6m3raoOZqNXu0qvz5Yu1wQPomzjxm3RRQSU37Fm7n52cWa4NQ+r+rU31IDK2L1IqNBEYGML2HWNn+4h8WlYw3OPW330iX68qYk6lGlx81uuahDGKcQuTZ+xLhWoSK6amdJAYchpQ0tisvnCdx+LuJVaKKTS/bmRF7AYk4XVg7KtT/3ulFAPKqtbthzG6S4begOI6tdoiaiFWx3pZf69E7pP7o7bhm+2FigHCzYlClEYMxR2Aud4Y6m3ragL3qC9X7NHHB1uMnYHB+hyVmGCQ7jNR4VAF9zMT9MD+nvvvIcJgYrzwiqRM7JA1wFlg5Kz2jBExHpm6LrnypXIVzThh/T1E1Qq+DfZOWbVafSC+P8YOa3+OIJtc5DSgbg5kJba3Yvn2D+zfYLlTx9wHv6O1uMHd7uK+BqUYUCbNbj9UN+uSKAOK24xSa5V8pwnw7/XXVfJV+O/HgFauJAYPfvRH/rKp/Jz1QBZ+TGZDFDq3QrRRzEPB/k/ToeHlHusD68o8SQKIOJqHmztkUIspKefOOOk/hnrbupogSMpqgyrX9KCg2pWVQ1YXkwoCZnKtGHJCUIb7edkvdI9/I9Gc54frwO3fNCHEq/Gfx4w2YASWXHvT8jIAiepNbV6bkMozb701thIWcmuc1t+b+7XJaCGrMAclGRl46QMPTZtbmue/jT89bE+8Mf4cD8j5uhU7RlbbRNJi4BlnHv9rvlVNTgPq2ysO+T5cJl1je0CqyNk2iIVw25L2ZgV9ua9DKQbUWkwRaNclUQbUpR/DV6fffu4cGRTayr5VEADgM2QhdWRxrzUFdWAAfVGoFBawcp7qiol0w0jX27IyjKHetq4mLDdJpXqA1KBgzy1kn49gE77b0AMOBgFG0fqslTiejdWkC9fsy8F1xfmOGDsX9vB89U95PnDRNsE9brWtC8PpTlyYzLr3rU8YMyKHXVj9XnSFf3+Ua27DLfmGcDtvfaP5/iBQJ+d9ntOA+rY0tiXc89ZBFYiDuNsgmMd6Jq17GdzXoRQDykH8bj8p++IxHBIGNJbrp4zde0KEyLcxZ97YkOxKv7m/fcOaoIWmA58ZVENxb3Iexhjqbetqgnwyqw0r8tgAg1ysXL07+BBtJhl8bzzk481vR+4X6zMiBqCmCR21gnG3Wm0rtZV2nPG8f0umbaDElW+1q9RmxHwrnEq4T5sGPwy4z/tAtZ+me9FXwzsm/iAXOQ2oL9o5JbDPV5GIlXsbbnAjYjvFh/talGJArSISXR+S/4E0oOSPWe+Hi6YN394AbjE3CtKHzwghBtUQeC93o59BKYZ627qa8O05E4wxnpDfG1O4mxUpe7bjZfTBd9+jEDehNVBVOvbUuWUkbxNcu+8ggBBjYrVDIbnATA6stpVCAvvY37Laoibjy1aD1SZm8pqLnAbUF5vQ9ltY+LwjuNGbYJXptmFy2xSL4L4epRhQApzcfrqOyP9AGlD2NKz3a4tixRVitUNLXrbdExbs3VkJzyjkmjGeVgCKz0Xiw21fqQnfb4VrerxhoCC/1zeQWOLgA+t0ikHg+y4ZcEJOMyJH0mqPQgvq+yZE7Ke1YbVDoZG8FFS32uO6DpmMsgpmImT10RQ4w8lAVhtfkGOX5DSgVj8oZZJ4/+/jx2SeP+tYw7aTkdzXoxQDCq5rn/sDD1VXfCANKAEC1vuRKN2EFeWFMLyxN+mPfmqX3PJdMwMKqxL28aybNLaMH7h9VGrCVwGIQW+iwD4Wbvq26OtKDOTj4dL13ffcGyGw6rbao9AzHH2rsZDf02qHQiPa3TSsSjEVtS681C471+SCZg/TaoOowjNIchpQX9pSzNGSFd4VaMOKzjoFhtq0bWOj2walGlA8D9y79b4IHMW7yGQxNIo4lEPWgPJFUl2ElRqrjONPn1u6GZuiZ1ETnEhgtYk9fQYIfLL68l0zszvr9axWSHtImWVa/aEmrI161Db5GA/wNOASD9kfJX2kydVFdDe/TayaKvzwd+uzWKH+Fr6JIAqtxkTlIKt9yCkWVjsUWl7P9wyEbmOAL9ilba/uWxfaucyIil5twUS5yGlAfWNbPaI4FF9Oqe97xSXven74/5DAzHqbSqkGFPjtyHqwJhT99GtxSBlQSvMxy/C5hkLUhC/8n1qZscRes2VACTShtmnTwN+E21+lJkjJsdogK9pzIkCpRarstCX3NwXd+Aa6NjXdw/3e90yarPYoFN/EDLVhtUGh9Hv94FsptfVBdK/VrhLeC/aBSVnrkpwG1HeMWUwd3ArKP1p9WUXpuQ+t3F1qLofgtkP9Gjo8MPSRu1+XQ8KA4t4kgrap3meomiC6z2rDnkossdfcNNDhQq5KqMVg9YWasIIEKpFrO5EhyOCb3/WvPBg0fZVWJqIBBas9isFqj9qw2qBQclx/P32EptNQn7qr4/lyGlBfjm2oO7+Oz73OvruLVWCHILbQib3bFvVj6LAFvnz/2AM32hh6A8p+BrUVrfYpasLnIglxU7ikXDOuMfLQCDF3UxiIfIwtqF1vX1cTvhqoiOpMEx32gzihwfr8yFc7UwZ0LFYbFEqO6++nD1ZOBMv49g5dMfhSozcnOQ2ozy2dYvwpKWn15e4hkpPrFs9A1DHmNwiR2xaxpeK+LiRQ0zpkgpgRjDzpSyHBaTEMtQHFYDTVzGRfjv0MqmIsG/nhycEkJ4pBNOXGtV6P6DeWfr87KwKT/ckY3PaVmuAGdA/GrTQeeXQp4Gr+wnH27+87P5DBiXsmVuyd+uj3HgCrPYrBao/asNqgUHJcf44+8KpYhRUsMRjnTM7nHrHeJwWrihMKSQlyYQVp9eUWZfAdbN+F2tKMSNtyT+Pi9+oyyn6oDeiNt9gBBCzf+bKbZospN64vPYKk9lhyfHfuKRKUcYuh3rauNqwi+Ijk92E5SowcUOsaWNnnnqX6yHEPWO1RDFZ71IbVBoWS4/pz9AHctxQetyLcXfGaiVhM3vddEB0bA/e/NdZRucp9Nppy2nOrzYBa6UldHyoxtAYUv75Vko9/CykgnHLj+vZAFyac1J6SZ+Vym5MLiislhnrbutrw5Q4ia49kIoLXwPr8yHc+ZW5yPD9WexSD1R61YbVBoeS4/hx91MGtSw5p27YQdbVzkNOAzvMUlsCdGoOv3jVBlC4TyYBanyX2kJBYhtaA+qLvQupgQsqNS1Frq01IeSsXX6msmO+O0oH1tqy8Y6i3rauNpn1QXKApKTWDpqkUXcyRTf2Q4/mx2qMYrPaoDasNCiXH9efowwdF5X11lknzybEKzWlAmfhZfRGdG/NM+iLtrUnDRDKgBA+5bVK212IYWgPqSymhYHsIKTcuxtlqQ55pLJxsb/UV8925oea4H2Oot60rBF9JQzQMZ3Gyf259dkRgxCDI8fxY7VEMVnvUhtUGhZLj+nP00QQnmbin41RixdcvOQ0o+PYuQ8dF8JWItA4R5zliwtmPrPe6avLSMa9rC+CytmU4ZLtLhtaA+maGoUnDHHNltW+CI42sNhiuHS2nV9Rhs9uXsxXz3bkFudmDjKHetq4Qmk5lIZ0o9HSc8cJXzo37alDkeH6s9igGqz1qw2qDQslx/Tn6aMMXa/Hgo3FBexa5Dah1RB4KPeWJnGkrHZAMhK6OBHTfC6WksWDg3X5iy5vGMrQG1Bd6HpJ71FTIuglmQL5UlpiDsCm8YPWBYr47ymTV23IOZAz1tnWFgEvonAv8+0TUxu3afdIPN3m8CT+4It9hyW3keH6s9igGqz1qw2qDQslx/Tn6aMMXadpU1i6U3AaUlabVH9W4QgqdEEhltaeyT1dY75diQDn70+0nJQI5hqE1oL5UCvIk28DYWW1RG74EY4KXQmY71Fz1BSOhmO/OTZym3xjqbesKhSotTfVmWRGnnIYfSkoBC1i6bKc30XqQ7uccz4/VHsVgtUdtWG1QKDmuP0cfbbDStN4j5GzMNnIbUPAdrM1h6k2wQPCNTV2u5Kz3SzGgnGHr9kPAY5cMrQE95Rw7/5PI1CY4ysw3eKK2FAaiunwHclMqbv4Cv8Eg+KatzGDMd+fWeOUA4hjqbeuKgTq8Vh91XT5pSbFmbdxeBJGATW2qgAlW4ZzRGlIwm1UzM1JfST9qJePCGhQ5nh+rPYrBao/asNqgUHJcf2ofbDGEBNY0eVpynPLRhQH1ndLDuOWb0LKtRLSu1Q6DHBOEFIv1nikGlLHbHdtvvyu+TnkMQ2tAfYWo+QI5WNWFL5cZoy8goFKIC5hoNKttJdyAuGnJDyXdZtGL28ui123vjWK+O3evwgozb6Letq4YeLBuuNkusu+KyQN7MUQ34m5hQkFwAMaS2qS4yqbcvqo47rSDK2uK9/twD4NmT5tTTFgtMEmiT4pK8/1TwQR324meA5grWXU+uyTH82O1RzFY7VEbVhsUSo7rT+mDe/aIo2eVk3Aq1/gS7ZlM+Vz9bJe0TbZD6MKAcn1nn28HWeIxoi50tZ/Ja5kINJW47KqMYYX1nqml/Phd6v1MujbujORYhtaAMjA2rSQvuHhxeZgqxdaZhRx1YlilkZB9Akrq+Q4iDtWZ59k3eOh3x43vroRDj8GqqLetKxYGEo5Ts/rqRxhcH9feNLZQdD+6cvLS8jsdJDmeH6s9isFqj9qw2qBQclx/Sh94NuqvZRxh8kmwEEUHSJeggpkvUBER8ZmDLgwoMIGk8IHVN+KaqcblC6asxIS2a6z3TTWgZ5w72n2Nh6pLhtaAgltIIFTcNL5jkELPhSTqtlopxYo9WF8xAmaHITA7dttyTTG47SulwlmKMYdZt4lAMUovumDo3JlmP7ps0pLgwtc5yfH8WO1RDFZ71IbVBoWS4/pT+rDOrYwRxeVzrD6hKwMKeOJ8200hYhGScpZoLNZ7pxpQt871MSfP6f2lG4bagPLj+g7U9Yl9LlwWCxbZaRjM3ELh+LRLr15i9mOJWR8PLwbAZ0BDN70x4G7bmHMUwW1fqR/4/nyl/lL00tKxwQt8702rg1DhzuIeyzUYxpLj+bHaoxis9qgNqw0KJcf1p/TRj/eInO+cx/Z1aUCB7ZKQrSNXjGsp54imYL1/qgF1gzyJd+iSoTaggBFlJdrkzq1E8QIq8gMDvfUa9itjISey6YBe8kQJpKkn9foM6LQnNvde0QzX4bYNzfWqcNtXygH7JrhFU1ekzJyZ6fvOY8SIPjByf/gGoCbh2sIFnHLMU05yPD9WexSD1R61YbVBoeS4/pQ+MCqxRpToVFI8crv5uzagQOBj6IlVLDC6uM4mrM+RakAZc+r9YBe6pC8DyiDJjeoqdtM5Rz8EpLB3wV4G0anMuqgNy+Y4Je/clSWzK+s9+znTklUhEaFEpjK449JcsHi7GaTgK0VoBUBZWJV0Lrkyrualdf0oJ7hg+U7Yh8ZbwKkXBD9VriUmF/xOJ501v5z13n3v2vL1GMgQeNBJXXp42qZy9klgCOkz1YQKA467lwGE/ZyZc7Z2lhAeS4773mqPYrDaozasNiiUHNffTx9Mzij/xn1Hgfhqz5CtA+4h9tPYFiGyvitXJqf1WJ+/C/hOeAZ41qprZZzk2tnzJUJ9UKvOOtb1N2UzNHGCEyhIwZou6cuAinSIDqv/0JVWRYTGuzlbPBScjyqEEB80WGnXx0NEClKXyICOE5brhplvzP7K5OvHFnXgINyJssISQohBgPfPOhvad0B+LmRAxwH2Qt0fGpGnGAOHhFv9HHbkc+UKF9c17lAhhDjUeOzJzWV1JaLorZQdtodyHn5uIQM6DpCv6f7YiOIQsfhOoa/EyQpCCHGo0ZZGeO/UblefIAM6YNiot35sROWiWAhuuOZGf1EBGVAhxKGIz4CyFcbKdBCRxDKgiVAyjvM4if4NgVzDh6Zt9KbbpJwpWocC6Rxv5tbHlQEVQhyKuAaUoMrrp6zoK5MiFhnQROp5n6TO3Dd1fbFw8fbS506VIIozE8zDgbwYzqYi8iT0p6w+LZh1UU2J/las2lVs2jKxz+UUQogUKMlIURxSFHe/OT7ZBzKgCZDXGVK4IVS56moKIYQYHDKgCVDJxDKEKaLgghBCiOFDBjQBcossYxgj/PXzXlCKiRBCDCsyoIlwQjvlrz50uH04s0/Hnjq3DEAa5MHNQggh8iMD2icH3n2/WLlqd1kE/tY7VxdXTV5a1nw9/6JF5X8paECR96dnvDruxcuFEELkQwZUCCGESEAGVAghhEhABlQIIYRIQAZUCCGESEAGVAghhEhABlQIIYRIQAZUCCGESEAGVAghhEhABlQIIYRIQAZUCCGESEAGVAghhEhABlQIIYRIQAZUCCGESEAGVAghhIimKP4XBcAIzFfvoBoAAAAASUVORK5CYII=' img_data = base64.b64decode(img_str) with open('1.png', 'wb') as f: f.write(img_data) print 'successful'
题目:在进行工业企业检查评估工作中,发现了疑似感染恶意软件的上位机。现已提取出上位机通信流量,尝试分析出异常点,获取FLAG。
题目附件连接:https://pan.baidu.com/s/1efRIQfLXkXDwrMhJZC2ZOA (提取码:vxx2)
解题步骤:
打开流量包,发现存在关于ARP、UDP、SNA协议的流量包,其中存在大量的UDP流量,如图所示:
首先对UDP流量包进行分析,分析发现UDP流量包的长度存在大量相同,一共出现的长度分别为16 17 12 14 10 18 19 20 22 25 32 89 95 104 105 116 131 137 524 528,在这些长度中仅12,89,104,105,131,137出现一次,其余长度多次出现,于是猜测这仅出现一次的流量包存在异常,于是分别分析12,89,104,105,131,137对应的流量包,发现131,137对应的流量包存在异常的字符串,如图所示:
提取出字符串666c61677b37466f4d3253746b6865507a7d
,并转换成对应ACII码,得到Flag,Flag为flag{7FoM2StkhePz}
。
题目:一些组态软件中进行会配置连接很多PLC设备信息。我们在SCADA工程中写入了flag字段,请获取该工程flag
题目附件连接:链接:https://pan.baidu.com/s/1LmaQpEJ-n3t654BhdjUrRg (提取码:xbuu)
解题步骤:
解压附件,发现得到一个.PCZ的文件,用记事本打开发现文件头为PK,于是将.PCZ的文件后缀改为.zip,解压后得到一个演示工程的文件夹,里面包含了很多文件,如图所示:
题目表明Flag就在文件夹中的某一个文件中,一个个打开审计过于麻烦,可以利用linux系统的grep指令,帮助我们在文件夹中查找指定关键字,在演示工程的文件夹中,使用指令grep -r "flag" ./
进行搜索,最终得到Flag,Flag为flag{D076-4D7E-92AC-A05ACB788292}
。
题目:工控安全分析人员在互联网上部署了工控仿真蜜罐,通过蜜罐可抓取并分析互联网上针对工业资产的扫描行为,将存在高危扫描行为的IP加入防火墙黑名单可有效减少工业企业对于互联网的攻击面。分析出日志中针对西门子私有通信协议扫描最多的IP,分析该扫描组织。FLAG为该IP的域名。
题目附件连接:https://pan.baidu.com/s/1WtuqaE64Zm2HqTPseIKUig (提取码:zu58)
解题步骤:
附件是一个henoypot.log,内容格式如图所示:
根据题目提示,Flag为某个IP对应的域名,于是可以编写脚本,首先提取出日志的IP,并且去重IP,然后再对每一个IP反查域名,寻找正确的域名,脚本和运行结果如下:
#-*- coding:utf-8 -*- import fileinput import re import os import shutil def readIp(): with open(r'/root/python/honeypot.log', 'r') as f: for line in f.readlines(): result2 = re.findall('[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}',line) #匹配ip正则表达式 if not result2 == []: result = result2[0] + '\n' with open('/root/python/ip.txt', 'a+') as w: w.write(result) def setIp():#去重 a=0 readDir = "/root/python/ip.txt" writeDir = "/root/python/newip.txt"#new lines_seen = set() outfile = open(writeDir, "w") f = open(readDir, "r") for line in f: if line not in lines_seen: a+=1 outfile.write(line) lines_seen.add(line) print(a) outfile.close() def readDns(): with open(r'/root/python/newip.txt', 'r') as g: for i in g.readlines(): com=os.popen('nslookup %s'%i) comm=com.read() if comm.find('NXDOMAIN')==-1: print comm if __name__ == '__main__': readIp() setIp() readDns()
最终尝试域名,找到正确的域名为:scan-42.security.ipip.net
,Flag为scan-42.security.ipip.net
。
题目:安全分析人员截获间谍发出的秘密邮件,该邮件只有一个mp3文件,安全人员怀疑间谍通过某种private的方式将信息传递出去,尝试分析该文件,获取藏在文件中的数据?
题目附件连接:链接:https://pan.baidu.com/s/1IcP-kaKw02jHUOIgTEOh6g (提取码:kgqa)
解题步骤:
uint32 frame_sync : 12 uint32 mpeg_id : 1 uint32 layer_id : 2 uint32 protection_bit : 1 uint32 bitrate_index : 4 uint32 frequency_index : 2 uint32 padding_bit : 1 uint32 private_bit : 1 uint32 channel_mode : 2 uint32 mode_extension : 2 uint32 copyright : 1 uint32 original : 1 uint32 emphasis : 2
12+1+2+1+4+2+1+1+2+2+1+1+2=32,即总共4字节,private_bit 为24,所在的字节为第3个字节因此要从前一个,即第二个字节开始提取内容,该字节对应的地址为 115130观察每一个mf组,大小都为414h,即1044字节,因此可以得到以下脚本:
# coding:utf-8 import re import binascii n = 115130 result = '' fina = '' file = open('flag-woody.mp3','rb') while n < 2222222 : file.seek(n,0) n += 1044 file_read_result = file.read(1) read_content = bin(ord(file_read_result))[-1] result = result + read_content textArr = re.findall('.{'+str(8)+'}', result) textArr.append(result[(len(textArr)*8):]) for i in textArr: fina = fina + hex(int(i,2))[2:].strip('\n') fina = fina#.decode('hex') print (fina)
将得到的字符串
464c41477b707231763474335f6269377d25a1cedc3e69888894dac4dd3a87c5e1c5276fa6d626832148d39288a0c596c95abaac3f09f9f524647595ae4894f9b82b3f4c1b47537c365d8d69d84a353c1a93ae436761d430e666e4111752d479746d1828f9c07c27ab1c3eaf1948f8a9e839b280a4342f321e89eb73b237a2b55d5310b77811c0975cfc1365e146f6c9212e244751398f73c17ee1a6664b4fd712d4b0a297275fa471fb65e440bc7bdc12fb0a39d81a1d374f2d55b8faabf9bf2c342f1046fbab7e66ac7896ffac672d277b89f8606759a8ac21a58fbb4b9b51d45f126a7f67c1a297e1fcb638356ec739b89555568816
转换对应的ASCII码,得到Flag,Flag为FLAG{pr1v4t3_bi7}
。