NDSS 2025 – Reinforcement Unlearning
嗯,用户让我帮忙总结一下这篇文章的内容,控制在一百个字以内,而且不需要用“文章内容总结”或者“这篇文章”这样的开头,直接写描述。首先,我需要仔细阅读用户提供的文章内容。 文章标题是“Session 10D: Machine Unlearning”,作者来自不同的大学和研究机构。主要内容是关于机器学习中的“unlearning”过程,特别是强化学习中的unlearning。机器unlearning指的是根据数据所有者的请求,减少特定训练数据对机器学习模型的影响。然而,强化学习领域在这个问题上研究较少。 强化学习中,代理会记住环境的特征,这可能引发隐私问题。根据数据保护法规,环境所有者有权撤销代理访问训练数据的权利,因此需要研究强化unlearning。与传统的样本级别撤销不同,强化unlearning需要撤销整个环境,带来了三个挑战:如何提出环境级别的unlearning方案、如何避免影响代理在其他环境中的表现、如何评估unlearning的效果。 为了解决这些挑战,作者提出了两种方法:基于递减强化学习的方法和利用环境投毒攻击的方法。此外,他们引入了“环境推断”的概念来评估unlearning的效果。 接下来,我需要将这些信息浓缩到100字以内,并且直接描述内容。需要注意的是,不要使用任何开头语句。 首先确定关键点:机器unlearning、强化学习、撤销整个环境、三个挑战、两种方法、环境推断评估。 然后组织语言:文章探讨了机器unlearning在强化学习中的应用,提出通过撤销整个环境来解决隐私问题,并提出了两种方法和评估机制。 检查字数是否在限制内,并确保信息准确无误。 </think> 文章探讨了机器unlearning在强化学习中的应用,提出通过撤销整个环境来解决隐私问题,并提出了两种方法和评估机制。 2026-1-29 20:0:0 Author: securityboulevard.com(查看原文) 阅读量:0 收藏

Session 10D: Machine Unlearning

Authors, Creators & Presenters: Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO’s Data61)
PAPER
Reinforcement Unlearning
Machine unlearning refers to the process of mitigating the influence of specific training data on machine learning models based on removal requests from data owners. However, one important area that has been largely overlooked in the research of unlearning is reinforcement learning. Reinforcement learning focuses on training an agent to make optimal decisions within an environment to maximize its cumulative rewards. During the training, the agent tends to memorize the features of the environment, which raises a significant concern about privacy. As per data protection regulations, the owner of the environment holds the right to revoke access to the agent’s training data, thus necessitating the development of a novel and pressing research field, termed reinforcement unlearning. Reinforcement unlearning focuses on revoking entire environments rather than individual data samples. This unique characteristic presents three distinct challenges: 1) how to propose unlearning schemes for environments; 2) how to avoid degrading the agent’s performance in remaining environments; and 3) how to evaluate the effectiveness of unlearning. To tackle these challenges, we propose two reinforcement unlearning methods. The first method is based on decremental reinforcement learning, which aims to erase the agent’s previously acquired knowledge gradually. The second method leverages environment poisoning attacks, which encourage the agent to learn new, albeit incorrect, knowledge to remove the unlearning environment. Particularly, to tackle the third challenge, we introduce the concept of ‘environment inference’ to evaluate the unlearning outcomes.
ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations’ YouTube Channel.

Permalink

*** This is a Security Bloggers Network syndicated blog from Infosecurity.US authored by Marc Handelman. Read the original post at: https://www.youtube-nocookie.com/embed/K0RqQoPOA40?si=YDTMEoN4iO9VyywG


文章来源: https://securityboulevard.com/2026/01/ndss-2025-reinforcement-unlearning/
如有侵权请联系:admin#unsafe.sh