NDSS 2025 – YuraScanner: Leveraging LLMs For Task-driven Web App Scanning4+
嗯,用户让我帮忙总结一篇文章,控制在一百个字以内,而且不需要特定的开头。好的,我先看看文章内容。 文章讲的是YuraScanner,这是一个新的网络应用扫描工具,利用大语言模型来执行任务驱动的扫描。传统的扫描器在发现深层漏洞时有困难,因为它们不理解工作流程。YuraScanner作为目标导向的代理,通过处理网页提取语义信息来建议行动。它使用LLM来填补语义差距,不需要用户提供的轨迹,因此对网络应用是agnostic的。 测试结果显示,在20个应用中发现了12个零日XSS漏洞,比Black Widow多很多。这说明YuraScanner在发现深层状态和漏洞检测方面更有效。 所以总结的时候需要涵盖YuraScanner是什么、它的优势、以及测试结果。控制在100字以内的话,可能需要简洁地表达这些点。 用户可能是一个网络安全的学生或从业者,想快速了解这个工具的价值。他们可能希望知道它如何改进现有的扫描方法,以及实际效果如何。 总结的时候要突出YuraScanner使用LLM、任务驱动、发现深层漏洞和零日XSS的优势。 </think> 研究团队开发了YuraScanner工具,利用大语言模型(LLMs)实现任务驱动的网络应用扫描。该工具通过分析网页内容提取语义信息,并自主执行任务以发现深层状态和漏洞。实验表明,在20个测试应用中发现12个零日XSS漏洞,显著优于传统方法。 2025-11-7 16:0:0 Author: securityboulevard.com(查看原文) 阅读量:16 收藏

SESSION
Session 2B: Web Security

Cruise Con 2025

Authors, Creators & Presenters: Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Glancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

PAPER
YuraScanner: Leveraging LLMs for Task-driven Web App Scanning
Web application scanners are popular and effective black-box testing tools, automating the detection of vulnerabilities by exploring and interacting with user interfaces. Despite their effectiveness, these scanners struggle with discovering deeper states in modern web applications due to their limited understanding of workflows. This study addresses this limitation by introducing YuraScanner, a task-driven web application scanner that leverages large-language models (LLMs) to autonomously execute tasks and workflows.
YuraScanner operates as a goal-based agent, suggesting actions to achieve predefined objectives by processing webpages to extract semantic information. Unlike traditional methods that rely on user-provided traces, YuraScanner uses LLMs to bridge the semantic gap, making it web application-agnostic. Using the XSS engine of Black Widow, YuraScanner tests discovered input points for vulnerabilities, enhancing the scanning process’s comprehensiveness and accuracy.
We evaluated YuraScanner on 20 diverse web applications, focusing on task extraction, execution accuracy, and vulnerability detection. The results
demonstrate YuraScanner’s superiority in discovering new attack surfaces and deeper states, significantly improving vulnerability detection. Notably,
YuraScanner identified 12 unique zero-day XSS vulnerabilities, compared to three by Black Widow. This study highlights YuraScanner’s potential to
revolutionize web application scanning with its automated, task-driven approach.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

*** This is a Security Bloggers Network syndicated blog from Infosecurity.US authored by Marc Handelman. Read the original post at: https://www.youtube-nocookie.com/embed/NwMrinE5VT0?si=3GBmQI8T95K84DPO


文章来源: https://securityboulevard.com/2025/11/ndss-2025-yurascanner-leveraging-llms-for-task-driven-web-app-scanning4/
如有侵权请联系:admin#unsafe.sh