A New Method for Predicting How Waves Move Through Materials
本文研究了基于松弛微形态模型的声学控制材料设计,探讨了材料特性、尺寸变化对模型一致性的影响,并通过渐近线和拟合方法分析了不同情况下(含曲率与不含曲率)的色散曲线特性及其参数关系。 2025-3-23 17:30:47 Author: hackernoon.com(查看原文) 阅读量:0 收藏

Abstract and 1. Introduction

1.1 A Polyethylene-based metamaterial for acoustic control

2 Relaxed micromorphic modelling of finite-size metamaterials

2.1 Tetragonal Symmetry / Shape of elastic tensors (in Voigt notation)

3 Dispersion curves

4 New considerations on the relaxed micromorphic parameters

4.1 Consistency of the relaxed micromorphic model with respect to a change in the unit cell’s bulk material properties

4.2 Consistency of the relaxed micromorphic model with respect to a change in the unit cell’s size

4.3 Relaxed micromorphic cut-offs

5 Fitting of the relaxed micromorphic parameters: the particular case of vanishing curvature (without Curl P and Curl P˙)

5.1 Asymptotes

5.2 Fitting

5.3 Discussion

6 Fitting of the relaxed micromorphic parameters with curvature (with Curl P)

6.1 Asymptotes and 6.2 Fitting

6.3 Discussion

7 Fitting of the relaxed micromorphic parameters with enhanced kinetic energy (with Curl P˙) and 7.1 Asymptotes

7.2 Fitting

7.3 Discussion

8 Summary of the obtained results

9 Conclusion and perspectives, Acknowledgements, and References

A Most general 4th order tensor belonging to the tetragonal symmetry class

B Coefficients for the dispersion curves without Curl P

C Coefficients for the dispersion curves with P

D Coefficients for the dispersion curves with P

6 Fitting of the relaxed micromorphic parameters with curvature (with Curl P)

6.1 Asymptotes

Because the cut-offs are independent of the coefficients with higher order of k, they do not change with the addition of Curl P. Instead, the expressions of the asymptotes hugely differ compared to the expression without Curl P discussed before. We only include the terms with the highest order of k available and compute

Surprisingly, the asymptotes with Curl P are significantly simpler because we must only solve a second-order polynomial instead of a third-order polynomial needed for the cut-offs and the asymptotes without Curl P. We now only have four distinct horizontal asymptotes (two shear and two pressure) in contrast to six before, which means that we must allow that the two curves (one shear and one pressure) will tend to infinity for high values of k, and our choice falls on the two highest optic curves. The same reasoning about the use of the asymptote in Section 5.1 is applied here besides for the two highest optic curves that do not have a horizontal asymptote.

6.2 Fitting

Although the expressions of the asymptotes are different from the ones without the Curl P, we still have the same split between the parameters, resulting in 4 independent parameters for every group of asymptotes, cf. Table 7.

Table 7: Dependence of the asymptotes of the dispersion curves on the free material parameters as function of the direction of propagation (0◦/45◦) and type of wave (shear/pressure).

We list the numerical values of all parameters used for the fitting of the micromorphic model in Table 8.

Table 8: Numerical values of the relaxed micromorphic model with Curl P fitted for the metamaterial whose unit cell is given in Figure 1.

6.3 Discussion

Figure 4: Dispersion curves ω(k) for 0 degrees (left) and 45 degrees (right) with pressure curves colored in yellow and shear in blue. The dots are the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves for the relaxed micromorphic model for β1 = 0. The value of the curve’s horizontal asymptotes are also shown with dashed lines.

Figure 5: Dispersion curves ω(k) for 0 degrees (left) and 45 degrees (right) with pressure curves colored in yellow and shear in blue. The dots are the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves for the relaxed micromorphic model for β1 = 0. The value of the curve’s horizontal asymptotes are also shown with dashed lines.

Most other values remain at the same magnitude but are slightly higher, cf, Table 9. In future works, we will consider an enhanced relaxed micromorphic model to better describe these effects.

Table 9: Second set of alternative numerical values of the relaxed micromorphic model with Curl P fitted for the metamaterial whose unit cell is given in Figure 1.



Authors:

(1) Jendrik Voss, Institute for Structural Mechanics and Dynamics, Technical University Dortmund and a Corresponding Author ([email protected]);

(2) Gianluca Rizzi, Institute for Structural Mechanics and Dynamics, Technical University Dortmund;

(3) Patrizio Neff, Chair for Nonlinear Analysis and Modeling, Faculty of Mathematics, University of Duisburg-Essen;

(4) Angela Madeo, Institute for Structural Mechanics and Dynamics, Technical University Dortmund.


文章来源: https://hackernoon.com/a-new-method-for-predicting-how-waves-move-through-materials?source=rss
如有侵权请联系:admin#unsafe.sh