Aaron, creator of DragonOS, has uploaded a video on his YouTube channel showing him testing out long-range communications via 802.11ah Wireless Networking and a T-HaLow bridge on two drones. 802.11ah (aka HaLow) is a WiFi protocol designed for long range IoT communications of up to 1 km (without obstructions).

In the video, Aaron attempts to stream IQ data with SDR++ over 802.11ah HaLow from a Pi + KrakenSDR operating over 1.6km away. The communication is established via two drones in the air that act as a relay bridge between the two ground stations. Although there are issues with keeping the connection stable, these experiments serve as a great first test of this capability.

Join me on an exciting month long+ journey as I push the boundaries of wireless communication using the Lilygo T-HaLow 802.11ah devices in bridge mode! In this video, I demonstrate how I successfully established an SSH connection from my laptop, across six T-HaLow units—some mounted on two drones and others on the ground—to a Raspberry Pi ground station equipped with DragonOS pi64 and a KrakenSDR.

What You'll See:

Innovative Network Setup: I configured three pairs of T-HaLow units, each pair consisting of an access point and a client. The first pair connected my laptop to the first drone. On each drone, I bridged two T-HaLow units via Ethernet, effectively creating a relay system. The second pair connected the two drones, and the third pair linked the second drone to the ground station Raspberry Pi.

Successful Long-Distance Communication: By the third attempt, I achieved a stable ping across the entire bridge and streamed IQ data from the SDR++ server on the Raspberry Pi to the SDR++ client on my laptop—over a distance of 1.6 km between drones!

Challenges and Triumphs: Experience the hurdles I faced, from connectivity issues to environmental obstacles, and how perseverance led to a successful connection.

Stunning Aerial Footage: Enjoy breathtaking drone shots that not only showcase the technology but also add a visual treat to the technical journey.

Why This Matters:

This project highlights the potential of increasing the standoff distance between equipment using 802.11ah technology, also known as Wi-Fi HaLow. Operating in the sub-1 GHz unlicensed bands, 802.11ah offers extended range and improved propagation through obstacles compared to traditional Wi-Fi frequencies. It's designed for low-power, long-range connectivity with lower power consumption—ideal for IoT applications, remote deployments, and innovative projects like this DragonBridge.

Equipment Used:

Building the DragonBridge: Long-Range 802.11ah Wireless Networking with Drones and T-HaLow Devices