OWASP发布大型语言模型漏洞威胁Top10(草案清单)
2023-6-7 13:47:11 Author: www.aqniu.com(查看原文) 阅读量:11 收藏

OWASP发布大型语言模型漏洞威胁Top10(草案清单)

日期:2023年06月07日 阅:90

代码、命令或操作时,就会发生未经授权的代码执行。典型的攻击类型包括:攻击者设计提示以指令LLM执行命令,该命令在底层系统上启动反向shell,从而授予攻击者未经授权的访问权限;LLM无意中被允许与系统级API进行交互,攻击者操纵该API在系统上执行未经授权的操作。

防护建议

针对该类型漏洞的预防措施包括:

  • 实施严格的输入验证和净化流程,以防止LLM处理恶意或意外的提示。
  • 确保适当的沙箱机制,并限制LLM的功能,以限制其与底层系统交互的能力。

05

服务器请求伪造(LLM05:2023)

当攻击者利用LLM执行意外请求或访问受限制的资源(比如内部服务、API或数据存储)时,就会出现服务器请求伪造(SSRF)漏洞。常见的SSRF漏洞包括:输入验证不足,允许攻击者操纵LLM提示发起未经授权的请求,以及网络或应用安全设置中的错误配置将内部资源暴露给LLM。为了执行攻击,攻击者还可以设计提示,指令LLM向内部服务发出请求,绕过访问控制,并获得对敏感信息未经授权的访问。

防护建议

针对该类型漏洞的预防措施包括:

  • 实施严格的输入验证和净化策略,防止通过恶意输入发起未经授权的请求。
  • 定期审计和审查网络/应用软件安全设置,以确保内部资源不会无意中暴露给LLM。

06

过度依赖模型生成的内容(LLM06:2023)

过度依赖LLM生成的内容是指组织和用户未经验证就信任LLM生成的内容,从而导致不正确的误导信息大量传播,降低人在决策中的参与度,并弱化批判性思考。与过度依赖LLM生成的内容相关的常见问题包括:未经验证就接受LLM生成的内容,以为LLM生成的内容没有偏误或错误信息,以及在没有人参与或监督的情况下依赖LLM生成的内容用于关键决策。

如果一家公司依赖LLM生成安全报告和分析,而LLM生成的报告含有大量的不正确数据,那么如果企业依赖这份由LLM生成的内容进行关键决策,就可能会酿成重大后果。网络安全分析师称这种现象为LLM幻觉。

防护建议

针对该类型漏洞的预防措施包括:

  • 对LLM生成的内容进行充分验证;
  • 严格限制使用那些未经验证的LLM生成内容;
  • 定期开展LLM生成内容的安全风险审计。

07

对LLM目标和行为对齐不足(LLM07:2023)

当企业的LLM应用行为与预期中的应用目标不一致时,就会导致不良的应用后果或安全漏洞,这种漏洞被称为AI应用对齐不足。常见问题包括:定义不明确的目标导致LLM优先考虑了那些不良或有害的行为,不一致的奖励机制引发意想不到的模型行为,以及对LLM行为测试和验证不足。如果旨在协助系统管理任务的LLM出现未对齐漏洞,就可能会执行有害的命令或降低系统的安全防护级别。

防护建议

针对该类型漏洞的预防措施包括: 

  • 在设计和开发过程中明确定义LLM的目标和预期行为。
  • 确保奖励机制和训练数据与预期结果相一致,不鼓励任何有害的违规行为。
  • 定期测试和验证LLM在众多场景、输入和上下文中的行为,以识别和解决对齐问题。

08

不完善的访问控制(LLM08:2023)

这种漏洞是指LLM在应用中未正确实施访问控制或身份验证,允许未经授权的用户与 LLM 进行交互,从而产生可被利用的安全漏洞。常见例子包括:未对访问LLM执行严格的身份验证要求,基于角色的访问控制(RBAC)实施不充分,允许用户执行超出预期权限的操作,以及未为LLM生成的内容和操作提供适当的访问控制。

防护建议

针对该类型漏洞的防护措施包括:

  • 实施强身份验证机制,比如多因素身份验证(MFA);
  • 应确保只有授权用户才能访问LLM;
  • 对LLM生成的内容和操作实施适当的访问控制,以防止未经授权的操作。

09

不恰当的错误处置(LLM09:2023)

错误处置漏洞主要指由于LMM的错误处置或调试信息被公开暴露,从而导致了向威胁分子泄露敏感信息、系统资料或潜在攻击途径。常见的错误处置漏洞包括:通过错误消息暴露敏感信息或系统资料,泄露可能帮助攻击者识别潜在漏洞或攻击途径的调试信息,以及未能有效处理应用中的错误,从而可能导致意外行为或系统崩溃。

防护建议

针对该类型漏洞的预防措施包括:

  • 实施适当的错误处理机制,以确保错误被及时地获取、记录和处理。
  • 确保错误消息和调试信息中不包含敏感信息或系统资料,同时考虑使用通用的错误消息,为开发者和管理员记录详细的错误数据。

10

训练数据中毒(LLM10:2023)

训练数据中毒是指攻击者操纵LLM的训练数据或微调程序,以引入漏洞、后门或偏误,从而危害模型的安全性、有效性或道德。常见的训练数据中毒问题包括:通过恶意操纵训练数据向LLM引入后门或漏洞,以及向LLM注入诱导数据,导致LLM生成有偏差或不适当的响应。

防护建议

针对该类型漏洞的防护措施包括: 

  • 从可信来源获取训练数据并验证其质量,确保训练数据的完整性。
  • 实施可靠的数据净化和预处理技术,以消除训练数据中的潜在漏洞或欺骗内容。
  • 使用监测和警报机制来检测LLM中的异常行为或安全问题,这些问题可能会帮助企业及时发现训练数据中毒。

参考链接:

https://www.csoonline.com/article/3698533/owasp-lists-10-most-critical-large-language-model-vulnerabilities.html


文章来源: https://www.aqniu.com/vendor/96744.html
如有侵权请联系:admin#unsafe.sh