探索 Kubernetes 三种常用探针使用方法
2023-1-23 08:5:8 Author: Docker中文社区(查看原文) 阅读量:10 收藏

K8s 中采用大量的异步机制、以及多种对象关系设计上的解耦,当应用实例数增加/删除、或者应用版本发生变化触发滚动升级时,系统并不能保证应用相关的 service、ingress 配置总是及时能完成刷新。在一些情况下,往往只是新的 Pod 完成自身初始化,系统尚未完成 Endpoint、负载均衡器等外部可达的访问信息刷新,老的 Pod 就立即被删除,最终造成服务短暂的额不可用,这对于生产来说是不可接受的,所以 K8s 就加入了一些存活性探针:StartupProbe、LivenessProbe、ReadinessProbe。

本文作者: LEE,老李,一个在 IT 行业摸爬滚打 16 年的技术老兵。

Pod 常见的状态

  • Pending:挂起,我们在请求创建 pod 时,条件不满足,调度没有完成,没有任何一个节点能满足调度条件。已经创建了但是没有适合它运行的节点叫做挂起,这其中也包含集群为容器创建网络,或者下载镜像的过程。

  • Running:Pod 内所有的容器都已经被创建,且至少一个容器正在处于运行状态、正在启动状态或者重启状态。

  • Succeeded:Pod 中所以容器都执行成功后退出,并且没有处于重启的容器。

  • Failed:Pod 中所以容器都已退出,但是至少还有一个容器退出时为失败状态。

  • Unknown:未知状态,所谓 pod 是什么状态是 apiserver 和运行在 pod 节点的 kubelet 进行通信获取状态信息的,如果节点之上的 kubelet 本身出故障,那么 apiserver 就连不上 kubelet,得不到信息了,就会看 Unknown。

Pod 重启策略

  • Always: 只要容器失效退出就重新启动容器。

  • OnFailure: 当容器以非正常(异常)退出后才自动重新启动容器。

  • Never: 无论容器状态如何,都不重新启动容器。

Pod 常见状态转换场景

K8s提供了 3 种探针:

  • ReadinessProbe

  • LivenessProbe

  • StartupProbe

探针存在的目的

在 Kubernetes 中 Pod 是最小的计算单元,而一个 Pod 又由多个容器组成,相当于每个容器就是一个应用,应用在运行期间,可能因为某也意外情况致使程序挂掉。

那么如何监控这些容器状态稳定性,保证服务在运行期间不会发生问题,发生问题后进行重启等机制,就成为了重中之重的事情,考虑到这点 kubernetes 推出了活性探针机制。

有了存活性探针能保证程序在运行中如果挂掉能够自动重启,但是还有个经常遇到的问题,比如说,在 Kubernetes 中启动 Pod,显示明明 Pod 已经启动成功,且能访问里面的端口,但是却返回错误信息。还有就是在执行滚动更新时候,总会出现一段时间,Pod 对外提供网络访问,但是访问却发生 404,这两个原因,都是因为 Pod 已经成功启动,但是 Pod 的的容器中应用程序还在启动中导致,考虑到这点 Kubernetes 推出了就绪性探针机制。

  1. LivenessProbe:存活性探针,用于判断容器是不是健康,如果不满足健康条件,那么 Kubelet 将根据 Pod 中设置的 restartPolicy (重启策略)来判断,Pod 是否要进行重启操作。LivenessProbe 按照配置去探测 ( 进程、或者端口、或者命令执行后是否成功等等),来判断容器是不是正常。如果探测不到,代表容器不健康(可以配置连续多少次失败才记为不健康),则 kubelet 会杀掉该容器,并根据容器的重启策略做相应的处理。如果未配置存活探针,则默认容器启动为通过(Success)状态。即探针返回的值永远是 Success。即 Success 后 pod 状态是 RUNING
  2. ReadinessProbe:就绪性探针,用于判断容器内的程序是否存活(或者说是否健康),只有程序(服务)正常, 容器开始对外提供网络访问(启动完成并就绪)。容器启动后按照 ReadinessProbe 配置进行探测,无问题后结果为成功即状态为 Success。pod 的 READY 状态为 true,从 0/1 变为 1/1。如果失败继续为 0/1,状态为 false。若未配置就绪探针,则默认状态容器启动后为 Success。对于此 pod、此 pod 关联的 Service 资源、EndPoint 的关系也将基于 Pod 的 Ready 状态进行设置,如果 Pod 运行过程中 Ready 状态变为 false,则系统自动从 Service 资源 关联的 EndPoint 列表中去除此 pod,届时 service 资源接收到 GET 请求后,kube-proxy 将一定不会把流量引入此 pod 中,通过这种机制就能防止将流量转发到不可用的 Pod 上。如果 Pod 恢复为 Ready 状态。将再会被加回 Endpoint 列表。kube-proxy 也将有概率通过负载机制会引入流量到此 pod 中。
  3. StartupProbe: StartupProbe 探针,主要解决在复杂的程序中 ReadinessProbe、LivenessProbe 探针无法更好的判断程序是否启动、是否存活。进而引入 StartupProbe 探针为 ReadinessProbe、LivenessProbe 探针服务。

(★) ReadinessProbe 与 LivenessProbe 的区别

  • ReadinessProbe 当检测失败后,将 Pod 的 IP:Port 从对应的 EndPoint 列表中删除。

  • LivenessProbe 当检测失败后,将杀死容器并根据 Pod 的重启策略来决定作出对应的措施。

(★) StartupProbe 与 ReadinessProbe、LivenessProbe 的区别

如果三个探针同时存在,先执行 StartupProbe 探针,其他两个探针将会被暂时禁用,直到 pod 满足 StartupProbe 探针配置的条件,其他 2 个探针启动,如果不满足按照规则重启容器。

另外两种探针在容器启动后,会按照配置,直到容器消亡才停止探测,而 StartupProbe 探针只是在容器启动后按照配置满足一次后,不在进行后续的探测。


正确的 ReadinessProbe 与 LivenessProbe 使用方式

LivenessProbe 和 ReadinessProbe 两种探针都支持下面三种探测方法:

  • ExecAction:在容器中执行指定的命令,如果执行成功,退出码为 0 则探测成功。

  • HTTPGetAction:通过容器的 IP 地址、端口号及路径调用 HTTP Get 方法,如果响应的状态码大于等于 - 200 且小于 400,则认为容器 健康。

  • TCPSocketAction:通过容器的 IP 地址和端口号执行 TCP 检 查,如果能够建立 TCP 连接,则表明容器健康。

探针探测结果有以下值:

  • Success:表示通过检测。

  • Failure:表示未通过检测。

  • Unknown:表示检测没有正常进行。

LivenessProbe 和 ReadinessProbe 两种探针的相关属性探针(Probe)有许多可选字段,可以用来更加精确的控制 Liveness 和 Readiness 两种探针的行为(Probe):

  • initialDelaySeconds:容器启动后要等待多少秒后就探针开始工作,单位“秒”,默认是 0 秒,最小值是 0

  • periodSeconds:执行探测的时间间隔(单位是秒),默认为 10s,单位“秒”,最小值是 1

  • timeoutSeconds:探针执行检测请求后,等待响应的超时时间,默认为 1s,单位“秒”,最小值是 1

  • successThreshold:探针检测失败后认为成功的最小连接成功次数,默认为 1s,在 Liveness 探针中必须为 1s,最小值为 1s。

  • failureThreshold:探测失败的重试次数,重试一定次数后将认为失败,在 readiness 探针中,Pod 会被标记为未就绪,默认为 3s,最小值为 1s

Tips:initialDelaySeconds 在 ReadinessProbe 其实可以不用配置,不配置默认 pod 刚启动,开始进行 ReadinessProbe 探测,但那有怎么样,除了 StartupProbe,ReadinessProbe、LivenessProbe 运行在 pod 的整个生命周期,刚启动的时候 ReadinessProbe 检测失败了,只不过显示 READY 状态一直是 0/1,ReadinessProbe 失败并不会导致重启 pod,只有 StartupProbe、LivenessProbe 失败才会重启 pod。而等到多少 s 后,真正服务启动后,检查 success 成功后,READY 状态自然正常

正确的 StartupProbe 使用方式

StartupProbe 探针支持下面三种探测方法:

  • ExecAction:在容器中执行指定的命令,如果执行成功,退出码为 0 则探测成功。

  • HTTPGetAction:通过容器的 IP 地址、端口号及路径调用 HTTP Get 方法,如果响应的状态码大于等于 200 且小于 400,则认为容器 健康。

  • TCPSocketAction:通过容器的 IP 地址和端口号执行 TCP 检 查,如果能够建立 TCP 连接,则表明容器健康。

探针探测结果有以下值:

  • Success:表示通过检测。

  • Failure:表示未通过检测。

  • Unknown:表示检测没有正常进行。

StartupProbe 探针属性

  • initialDelaySeconds:容器启动后要等待多少秒后就探针开始工作,单位“秒”,默认是 0 秒,最小值是 0

  • periodSeconds:执行探测的时间间隔(单位是秒),默认为 10s,单位“秒”,最小值是 1

  • timeoutSeconds:探针执行检测请求后,等待响应的超时时间,默认为 1s,单位“秒”,最小值是 1

  • successThreshold:探针检测失败后认为成功的最小连接成功次数,默认为 1s,在 Liveness 探针中必须为 1s,最小值为 1s。

  • failureThreshold:探测失败的重试次数,重试一定次数后将认为失败,在 readiness 探针中,Pod 会被标记为未就绪,默认为 3s,最小值为 1s

Tips:在 StartupProbe 执行完之后,其他 2 种探针的所有配置才全部启动,相当于容器刚启动的时候,所以其他 2 种探针如果配置了 initialDelaySeconds,建议不要给太长。

LivenessProbe 探针使用示例

1. 通过 exec 方式做健康探测

[[email protected] ~]# vim liveness-exec.yaml

apiVersion: v1kind: Podmetadata: name: liveness-exec labels: app: livenessspec: containers: - name: liveness image: busybox args: #创建测试探针探测的文件 - /bin/sh - -c - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600 LivenessProbe: initialDelaySeconds: 10 #延迟检测时间 periodSeconds: 5 #检测时间间隔 exec: #使用命令检查 command: #指令,类似于运行命令sh - cat #sh 后的第一个内容,直到需要输入空格,变成下一行 - /tmp/healthy #由于不能输入空格,需要另外声明,结果为sh cat"空格"/tmp/healthy

思路整理:

容器在初始化后,执行(/bin/sh -c "touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600")首先创建一个 /tmp/healthy 文件,然后执行睡眠命令,睡眠 30 秒,到时间后执行删除 /tmp/healthy 文件命令。

而设置的存活探针检检测方式为执行 shell 命令,用 cat 命令输出 healthy 文件的内容,如果能成功执行这条命令一次(默认 successThreshold:1),存活探针就认为探测成功,由于没有配置(failureThreshold、timeoutSeconds),所以执行(cat /tmp/healthy)并只等待 1s,如果 1s 内执行后返回失败,探测失败。

在前 30 秒内,由于文件存在,所以存活探针探测时执行 cat /tmp/healthy 命令成功执行。30 秒后 healthy 文件被删除,所以执行命令失败,Kubernetes 会根据 Pod 设置的重启策略来判断,是否重启 Pod。

2. 通过 HTTP 方式做健康探测

[[email protected] ~]# vi liveness-http.yaml

apiVersion: v1kind: Podmetadata:name: liveness-httplabels:test: livenessspec:containers:- name: livenessimage: test.com/test-http-prober:v0.0.1LivenessProbe:failureThreshold: 5 #检测失败5次表示未就绪initialDelaySeconds: 20 #延迟加载时间periodSeconds: 10 #重试时间间隔timeoutSeconds: 5 #超时时间设置successThreshold: 2 #检查成功为2次表示就绪httpGet:scheme: HTTPport: 8081path: /ping

思路整理:

在 pod 启动后,初始化等待 20s 后,LivenessProbe 开始工作,去请求 http://Pod_IP:8081/ping 接口,类似于 curl -I http://Pod_IP:8081/ping 接口,考虑到请求会有延迟(curl -I 后一直出现假死状态),所以给这次请求操作一直持续 5s,如果 5s 内访问返回数值在>=200 且<=400 代表第一次检测 success,如果是其他的数值,或者 5s 后还是假死状态,执行类似(ctrl+c)中断,并反回 failure 失败。

等待 10s 后,再一次的去请求 http://Pod_IP:8081/ping 接口。如果有连续的 2 次都是 success,代表无问题。如果期间有连续的 5 次都是 failure,代表有问题,直接重启 pod,此操作会伴随 pod 的整个生命周期。

Tips

Http Get 探测方式有如下可选的控制字段:

  • scheme: 用于连接 host 的协议,默认为 HTTP。

  • host:要连接的主机名,默认为 Pod IP,可以在 Http Request headers 中设置 host 头部。

  • port:容器上要访问端口号或名称。

  • path:http 服务器上的访问 URI。

  • httpHeaders:自定义 HTTP 请求 headers,HTTP 允许重复 headers。

3. 通过 TCP 方式做健康探测

[[email protected] ~]# vi liveness-tcp.yaml

apiVersion: v1kind: Podmetadata:name: liveness-tcplabels:app: livenessspec:containers:- name: livenessimage: nginxLivenessProbe:initialDelaySeconds: 15periodSeconds: 20tcpSocket:port: 80

思路整理:

TCP 检查方式和 HTTP 检查方式非常相似,在容器启动 initialDelaySeconds 参数设定的时间后,kubelet 将发送第一个 LivenessProbe 探针,尝试连接容器的 80 端口,类似于 telnet 80 端口。每隔 20 秒(periodSeconds)做探测,如果连接失败则将杀死 Pod 重启容器。


ReadinessProbe 探针使用示例

ReadinessProbe 探针使用方式和 LivenessProbe 探针探测方法一样,也是支持三种,只是一个是用于探测应用的存活,一个是判断是否对外提供流量的条件。

[[email protected] ~]# vim readiness-exec.yaml
apiVersion: v1kind: Podmetadata:    name: readiness-exec    labels:        app: readiness-execspec:    containers:        - name: readiness-exec          image: busybox          args: #创建测试探针探测的文件              - /bin/sh              - -c              - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600          LivenessProbe:              initialDelaySeconds: 10              periodSeconds: 5              exec:                  command:                      - cat                      - /tmp/healthy---apiVersion: v1kind: Podmetadata:    name: readiness-http    labels:        app: readiness-httpspec:    containers:        - name: readiness-http          image: test.com/test-http-prober:v0.0.1          ports:              - name: server                containerPort: 8080              - name: management                containerPort: 8081          ReadinessProbe:              initialDelaySeconds: 20              periodSeconds: 5              timeoutSeconds: 10              httpGet:                  scheme: HTTP                  port: 8081                  path: /ping---apiVersion: v1kind: Podmetadata:    name: readiness-tcp    labels:        app: readiness-tcpspec:    containers:        - name: readiness-tcp          image: nginx          LivenessProbe:              initialDelaySeconds: 15              periodSeconds: 20              tcpSocket:                  port: 80

这里说说 terminationGracePeriodSeconds

terminationGracePeriodSeconds 这个参数非常的重要,具体讲解。请参考我的另外一篇文章《详细解读 Kubernetes 中 Pod 优雅退出,帮你解决大问题》, 里面有详细的解释,我这里说下其他的内容。

Tips: terminationGracePeriodSeconds 不能用于 ReadinessProbe,如果将它应用于 ReadinessProbe 将会被 apiserver 接口所拒绝

LivenessProbe:httpGet:path: /pingport: liveness-portfailureThreshold: 1periodSeconds: 30terminationGracePeriodSeconds: 30 # 宽限时间30s

StartupProbe 探针使用示例

[[email protected] ~]# vim startup.yaml

apiVersion: v1kind: Podmetadata:name: startuplabels:app: startupspec:containers:- name: startupimage: nginxStartupProbe:failureThreshold: 3 # 失败阈值,连续几次失败才算真失败initialDelaySeconds: 5 # 指定的这个秒以后才执行探测timeoutSeconds: 10 # 探测超时,到了超时时间探测还没返回结果说明失败periodSeconds: 5 # 每隔几秒来运行这个httpGet:path: /testprot: 80

思路整理:

在容器启动 initialDelaySeconds (5 秒) 参数设定的时间后,kubelet 将发送第一个 StartupProbe 探针,尝试连接容器的 80 端口。如果连续探测失败没有超过 3 次 (failureThreshold) ,且每次探测间隔为 5 秒 (periodSeconds) 和探测执行时间不超过超时时间 10 秒/每次 (timeoutSeconds),则认为探测成功,反之探测失败,kubelet 直接杀死 Pod。

通过对三种探针的探索,我们能够得到一句话的总结:理解底层结构,能够最大程度在可用性、安全性,持续性等方面让 Pod 达到最佳工作状态。凡事没有“银弹”,尤其对重要的业务需要一个案例一个解决方案,希望这次的分析能提供给大家开启一个思路之门。

本文转载自:「掘金」,原文:https://url.hi-linux.com/GV1Hd,版权归原作者所有。

推荐阅读 点击标题可跳转

《Docker是什么?》

《Kubernetes是什么?》

《Kubernetes和Docker到底有啥关系?》

《教你如何快捷的查询选择网络仓库镜像tag》

《Docker镜像进阶:了解其背后的技术原理》

《教你如何修改运行中的容器端口映射》

《k8s学习笔记:介绍&上手》

《k8s学习笔记:缩扩容&更新》

《Docker 基础用法和命令帮助》

《在K8S上搭建Redis集群》

《灰度部署、滚动部署、蓝绿部署》

《PM2实践指南》

《Docker垃圾清理》

《Kubernetes(k8s)底层网络原理刨析》

《容器环境下Node.js的内存管理》

《MySQL 快速创建千万级测试数据》

《Linux 与 Unix 到底有什么不同?》

《浅谈几种常见 RAID 的异同》

《Git 笔记-程序员都要掌握的 Git》

《老司机必须懂的MySQL规范》

《Docker中Image、Container与Volume的迁移》

《漫画|如何用Kubernetes搞定CICD》

《写给前端的Docker实战教程》

《Linux 操作系统知识地图2.0,我看行》

《16个概念带你入门 Kubernetes》

《程序员因接外包坐牢456天,长文叙述心酸真实经历》

《IT 行业老鸟,有话对你说》

《HTTPS 为什么是安全的?说一下他的底层实现原理?


免责声明:本文内容来源于网络,所载内容仅供参考。转载仅为学习和交流之目的,如无意中侵犯您的合法权益,请及时联系Docker中文社区!



文章来源: http://mp.weixin.qq.com/s?__biz=MzI1NzI5NDM4Mw==&mid=2247494401&idx=1&sn=20c017a001429342d63b8ace44426343&chksm=ea1b0241dd6c8b57245d0bb2d931bc9c5338beeb9dcaeef14f0304c465efcc1eaa1d1f55b3de#rd
如有侵权请联系:admin#unsafe.sh