下载最新2.1版本源码
git clone https://github.com/unicorn-engine/unicorn.git
编译
mkdir build
cd build
cmake -G "Unix Makefiles" ..
cmake -G "Xcode" ..
make -j6
模拟运行shellcode例子代码
/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh & Dang Hoang Vu, 2015 */
/* Sample code to trace code with Linux code with syscall */
#include <unicorn/unicorn.h>
#include <string.h>
// code to be emulated
#define X86_CODE32 \
"\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\xb2\x05\xcd" \
"\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xff\x68\x65\x6c\x6c" \
"\x6f"
#define X86_CODE32_SELF \
"\xeb\x1c\x5a\x89\xd6\x8b\x02\x66\x3d\xca\x7d\x75\x06\x66\x05\x03\x03\x89" \
"\x02\xfe\xc2\x3d\x41\x41\x41\x41\x75\xe9\xff\xe6\xe8\xdf\xff\xff\xff\x31" \
"\xd2\x6a\x0b\x58\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3" \
"\x52\x53\x89\xe1\xca\x7d\x41\x41\x41\x41\x41\x41\x41\x41"
// memory address where emulation starts
#define ADDRESS 0x1000000
#define MIN(a, b) (a < b ? a : b)
// callback for tracing instruction
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size,
void *user_data)
{
int r_eip;
uint8_t tmp[16];
printf("Tracing instruction at 0x%" PRIx64 ", instruction size = 0x%x\n",
address, size);
uc_reg_read(uc, UC_X86_REG_EIP, &r_eip);
printf("*** EIP = %x ***: ", r_eip);
size = MIN(sizeof(tmp), size);
if (!uc_mem_read(uc, address, tmp, size)) {
uint32_t i;
for (i = 0; i < size; i++) {
printf("%x ", tmp[i]);
}
printf("\n");
}
}
// callback for handling interrupt
// ref: http://syscalls.kernelgrok.com/
static void hook_intr(uc_engine *uc, uint32_t intno, void *user_data)
{
int32_t r_eax, r_ecx, r_eip;
uint32_t r_edx, size;
unsigned char buffer[256];
// only handle Linux syscall
if (intno != 0x80)
return;
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_read(uc, UC_X86_REG_EIP, &r_eip);
switch (r_eax) {
default:
printf(">>> 0x%x: interrupt 0x%x, EAX = 0x%x\n", r_eip, intno, r_eax);
break;
case 1: // sys_exit
printf(">>> 0x%x: interrupt 0x%x, SYS_EXIT. quit!\n\n", r_eip, intno);
uc_emu_stop(uc);
break;
case 4: // sys_write
// ECX = buffer address
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
// EDX = buffer size
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
// read the buffer in
size = MIN(sizeof(buffer) - 1, r_edx);
if (!uc_mem_read(uc, r_ecx, buffer, size)) {
buffer[size] = '\0';
printf(">>> 0x%x: interrupt 0x%x, SYS_WRITE. buffer = 0x%x, size = "
"%u, content = '%s'\n",
r_eip, intno, r_ecx, r_edx, buffer);
} else {
printf(">>> 0x%x: interrupt 0x%x, SYS_WRITE. buffer = 0x%x, size = "
"%u (cannot get content)\n",
r_eip, intno, r_ecx, r_edx);
}
break;
}
}
static void test_i386(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2;
int r_esp = ADDRESS + 0x200000; // ESP register
printf("Emulate i386 code\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_SELF,
sizeof(X86_CODE32_SELF) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ESP, &r_esp);
// tracing all instructions by having @begin > @end
uc_hook_add(uc, &trace1, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// handle interrupt ourself
uc_hook_add(uc, &trace2, UC_HOOK_INTR, hook_intr, NULL, 1, 0);
printf("\n>>> Start tracing this Linux code\n");
// emulate machine code in infinite time
// err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_SELF), 0,
// 12); <--- emulate only 12 instructions
err =
uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_SELF) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n", err,
uc_strerror(err));
}
printf("\n>>> Emulation done.\n");
uc_close(uc);
}
int main(int argc, char **argv, char **envp)
{
if (argc == 2) {
if (!strcmp(argv[1], "-32")) {
test_i386();
} else if (!strcmp(argv[1], "-h")) {
printf("Syntax: %s <-32|-64>\n", argv[0]);
}
} else {
test_i386();
}
return 0;
}
更多其它详细教程可以联系作者。
目录
# unicorn源码分析与使用视频教程
## 基础
* 1.课程介绍
* 2.unicorn源码编译
* 3.unicorn简单使用与调试
* 4.unicorn 源码框架了解
* 5.实现一个最简单的my_qemu(kvm)
* 6.shellcode 指令追踪使用
* 7.shellcode 指令追踪源码分析
* 8.使用中断事件hook源码分析 (syscall)
* 9.使用中断事件hook源码分析(arm syscall)
* 10.内存操作事件hook(读写执行)
* 11.内存操作事件hook源码分析
* 12.异常事件使用与源码分析
* 13.再谈unicorn(框架定位与缺陷)
## x86架构中使用
* 14.模拟单个参数函数与获取返回值(x86_64构架)
* 15.模拟多个参数函数(x86_64构架)
* 16.模拟获取全局变量函数(x86_64构架)
* 17.外部符合libc库函数调用模拟(x86_64构架)
* 18.模拟多个函数调用链(x86_64构架)
### 常用算法模拟
* 19.模拟base64编码(x86_64构架)
* 20.aes算法模拟(x86_64构架)
* 21.des算法模拟(x86_64构架)
* 22.rc4算法模拟(x86_64构架)
* 23.其它算法模拟思路(x86_64构架)
## arm架构中使用
* 24.模拟单个参数函数与获取返回值(arm64构架)
* 25.模拟多个参数函数(arm64构架)
* 26.模拟获取全局变量函数(arm64构架)
* 27.arm构架中的算法模拟(arm64构架)
* 28.android中模拟与JNI交互(arm64构架)
* 29.JNI模拟call java函数(arm64构架)
## 完善unicorn
* 30.unicorn ELF文件模拟
* 31.unicorn 其它可执行文件
* 32.unicorn调试器介绍
## ollvm混淆
* 33.unicorn结合capstone使用
* 34.生成CFG(控制流程图)
* 35.ollvm反混淆思路
其它学习教程。